

The Crypt: a running example

Throughout this book, you develop a text-based adventure game called The Crypt.
Players can explore locations on a map, moving from place to place and picking up
items to help them solve challenges and get past obstacles. The last section of each
chapter uses what you’ve learned to develop the game further. You’ll see how the pro-
gramming concepts help you build the pieces that are then combined to produce a
large program.

Game element Task JavaScript Chapter

Players Deciding what information you need to
know about each player

Variables 2

Collecting player information in one place Objects 3

Displaying information about players on
the console

Functions 4–7

Creating a list of items collected by each
player

Arrays 8

Organizing player-creation code Constructors 9

Places Creating lots of places to explore, all with
a similar structure

Constructors 9

Joining places with exits Square bracket notation 10

Game Adding simple functions for movement,
collecting items, and displaying informa-
tion

Square bracket notation 10

Maps Joining places with exits Square bracket notation 10

Get Programming with JavaScript

Get Programming
with JavaScript

JOHN R. LARSEN

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Helen Stergius
20 Baldwin Road Technical development editors: Chuck Henderson, Ozren Harlovic
PO Box 761 Review editor: Ozren Harlovic
Shelter Island, NY 11964 Project editor: Tiffany Taylor

Copyeditor: Linda Recktenwald
Proofreaders: Elizabeth Martin

Bonnie Culverhouse
Technical proofreader: Romin Irani

Typesetter: Dennis Dalinnik
Cover designer: Leslie Haimes

ISBN: 9781617293108
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

www.manning.com

brief contents
PART 1 CORE CONCEPTS ON THE CONSOLE1

1 ■ Programming, JavaScript, and JS Bin 3

2 ■ Variables: storing data in your program 16

3 ■ Objects: grouping your data 27

4 ■ Functions: code on demand 40

5 ■ Arguments: passing data to functions 57

6 ■ Return values: getting data from functions 70

7 ■ Object arguments: functions working with objects 83

8 ■ Arrays: putting data into lists 104

9 ■ Constructors: building objects with functions 122

10 ■ Bracket notation: flexible property names 147

PART 2 ORGANIZING YOUR PROGRAMS169

11 ■ Scope: hiding information 171

12 ■ Conditions: choosing code to run 198

13 ■ Modules: breaking a program into pieces 221

14 ■ Models: working with data 248
v

BRIEF CONTENTSvi
15 ■ Views: displaying data 264

16 ■ Controllers: linking models and views 280

PART 3 JAVASCRIPT IN THE BROWSER.....................................299

17 ■ HTML: building web pages 301

18 ■ Controls: getting user input 323

19 ■ Templates: filling placeholders with data 343

20 ■ XHR: loading data 367

21 ■ Conclusion: get programming with JavaScript 387

22 ■ Node: running JavaScript outside the browser online

23 ■ Express: building an API online

24 ■ Polling: repeating requests with XHR online

25 ■ Socket.IO: real-time messaging online

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxii

PART 1 CORE CONCEPTS ON THE CONSOLE.1

1 Programming, JavaScript, and JS Bin 3
1.1 Programming 3
1.2 JavaScript 4
1.3 Learning by doing and thinking 5
1.4 JS Bin 5

JS Bin panels 6 ■ Following the code listings on JS Bin 7
Logging to the console 8 ■ Code comments 9 ■ Further
Adventures 9 ■ Error messages 9 ■ Line numbers 10
Get an account 10

1.5 The Crypt—our running example 11
Playing The Crypt 11 ■ Steps for building The Crypt 12

1.6 Further examples and practice 14
1.7 Browser support 15
1.8 Summary 15
vii

CONTENTSviii
2 Variables: storing data in your program 16
2.1 What is a variable? 17
2.2 Declaring variables and assigning values 17

Declaring variables 17 ■ Assigning values to variables 18
One-step declaration and assignment 20 ■ Using a variable in
its own assignment 21

2.3 Choosing good variable names 22
Keywords and reserved words 22 ■ Rules for naming
variables 23 ■ camelCase 23 ■ Use descriptive
variable names 24

2.4 The Crypt—player variables 24
2.5 Summary 25

3 Objects: grouping your data 27
3.1 A need for organization 28
3.2 Creating objects 29

Creating an empty object 30 ■ Properties as key-value pairs 30

3.3 Accessing object properties 32
3.4 Updating object properties 33
3.5 Further examples 35

Writing a blog 35 ■ Creating a calendar 35 ■ What’s the
weather like? 36 ■ The testing effect 37 ■ Create your own 37

3.6 The Crypt—a player object 37
3.7 Summary 39

4 Functions: code on demand 40
4.1 Noticing repetition 40

Displaying object properties as text 41 ■ Adding tax and
displaying a summary 42

4.2 Defining and calling functions 43
Defining new functions 44 ■ Function expressions and
function declarations 45 ■ Using functions 46
Functions step by step 47

4.3 Reducing repetition 48
A function for displaying object properties as text 48
Functions for adding tax and displaying a summary 50

CONTENTS ix
4.4 Making code easier to read and update 52
Updating the showMovieInfo function 52

4.5 The Crypt—displaying player information 54
A function to display player information 55

4.6 Summary 56

5 Arguments: passing data to functions 57
5.1 Function reuse and versatility 57
5.2 Passing information to functions 59

Passing one argument to a function 59 ■ Passing multiple
arguments to a function 63

5.3 The Crypt—displaying player information 64
Displaying players’ names 65 ■ Displaying players’ health 66
Displaying players’ locations 67 ■ Putting it all together—
displaying players’ information 68

5.4 Summary 69

6 Return values: getting data from functions 70
6.1 Returning data from functions 70

The return value replaces the function call 71 ■ The return
keyword 72 ■ Using arguments to determine the return value 72

6.2 Experimenting at the console prompt 75
Calling functions 75 ■ Declaring new variables 76

6.3 The Crypt—building player information strings 77
Building strings for a player’s name, health, and location 78
A function for player information—putting the pieces together 79

6.4 Summary 81

7 Object arguments: functions working with objects 83
7.1 Using objects as arguments 84

Accessing properties of an object argument 84 ■ Adding properties
to an object argument 85

7.2 Returning objects from functions 87
Building planets—an object creation function 87 ■ Points in
2D space 89

CONTENTSx
7.3 Methods—setting functions as properties of objects 91
Namespaces—organizing related functions 91
Math methods 92 ■ String methods 94 ■ spacer—more methods
for your namespace 96 ■ Deep namespace exploration 98

7.4 The Crypt–player objects as arguments 101
7.5 Summary 102

8 Arrays: putting data into lists 104
8.1 Creating arrays and accessing elements 104

Creating an array 105 ■ Accessing array elements 106

8.2 Array methods 110
Adding and removing elements 111 ■ Slicing and splicing
arrays 111 ■ Visiting each element with forEach 113

8.3 The Crypt—a player items array 118
8.4 Summary 120

9 Constructors: building objects with functions 122
9.1 Using functions to build objects 123

Adding properties 124 ■ Adding methods 125

9.2 Using constructor functions to build objects 127
Constructor functions 127 ■ World building—making use of
the Planet constructor 130 ■ Telling objects apart with the
instanceof operator 131

9.3 Building mastery—two examples of constructors 132
9.4 The Crypt—providing places to plunder 134

Building the Place constructor—title and description 135
Building the Place constructor—items for your hoard 136
Building the Place constructor—exits to explore 137

9.5 The Crypt—streamlining player creation 140
Organizing player properties 141 ■ Turning functions
into methods 143 ■ Assigning places to players 144
Using null as a placeholder for objects 144

9.6 Summary 145

10 Bracket notation: flexible property names 147
10.1 Using square brackets instead of dots 148

Brackets in action—people’s names as keys 150 ■ Making the most
of square bracket notation—word counts 152

CONTENTS xi
10.2 The Crypt—enhancing exit excitement 155
Using an object to hold the exits 156 ■ Creating functions to
add and display exits 158 ■ Giving each place object its own
set of exits 159 ■ Adding the exits object to the full Place
constructor 161 ■ Testing the Place constructor 163

10.3 The Crypt—let the games begin! 164
Updating the display—render 165 ■ Exploring the
map—go 166 ■ Collecting all the things—get 166
Designing a bigger adventure—Jahver’s ship 167

10.4 What’s next? 167
10.5 Summary 167

PART 2 ORGANIZING YOUR PROGRAMS.......................169

11 Scope: hiding information 171
11.1 The dangers of global variables 172

Access all areas—peeking and tweaking 173 ■ Access all areas—
relying on an implementation 174 ■ Naming collisions 176
Crazy bugs 177

11.2 The benefits of local variables 177
11.3 Interfaces—controlling access and providing

functionality 179
Using a function to hide variables 180 ■ Creating multiple
independent counters with getCount 181 ■ Creating multiple
independent counters with a constructor function 182

11.4 Creating a quick quiz app 183
Using an object as a namespace 184 ■ Hiding the questions
array 185

11.5 The Crypt—hiding player info 187
Our current Player constructor—everything is public 187
An updated Player constructor—some variables are hidden 188

11.6 The Crypt—hiding place info 191
11.7 The Crypt—user interaction 193

The interface—go and get 194 ■ Hiding the implementation 195

11.8 Summary 196

CONTENTSxii
12 Conditions: choosing code to run 198
12.1 Conditional execution of code 199

The strict equality operator, === 199 ■ The if statement 200
The else clause 200 ■ Hide the secret number inside a
function 202

12.2 Generating random numbers with Math.random() 204
12.3 Further conditions with else if 206

Comparison operators 208

12.4 Checking answers in the quiz app 210
Multiple declarations with a single var keyword 211
Displaying a question 212 ■ Moving to the next question 213
Checking the player’s answer 213 ■ Handling a player’s
answer 214 ■ Returning the interface object 214

12.5 The Crypt—checking user input 214
Step by step through the go method 215 ■ Never trust
user input 216 ■ Safe exploration—using the if statement
to avoid problems 217

12.6 Summary 219

13 Modules: breaking a program into pieces 221
13.1 Understanding bins and files on JS Bin 223

Creating a bin 225 ■ Writing some code 225 ■ Making a note
of the filename 225 ■ Viewing an individual code file 226

13.2 Importing files into other projects 226
Creating a bin 227 ■ Writing some code 227 ■ Adding a
script element 227 ■ Refreshing the page 228 ■ Running the
program 228

13.3 Importing the Number Generator—further
examples 229
Picking random questions in the quiz app 230 ■ Using the between
function in your guessing game 231

13.4 Importing multiple files 232
13.5 Collisions—when imported code overwrites

your variables 234
Variable collisions 236 ■ Minimizing collisions by
using namespaces 237

CONTENTS xiii
13.6 Immediately invoked function expressions (IIFE) 238
Recognizing function expressions 240 ■ Invoking functions 240
Immediately invoking function expressions 241 ■ Returning
information from an IIFE 241

13.7 The Crypt—organizing code into modules 242
Sharing a namespace across modules 244

13.8 Summary 246

14 Models: working with data 248
14.1 Building a fitness app—data and models 249

Defining a User constructor 250 ■ Getting a feel for the
data as a JavaScript object 251 ■ Converting the data into
a user model 252 ■ What’s next for the fitness app? 253

14.2 The Crypt—separating map data from the game 253
Map data 255 ■ Adding challenges to the map data 256
Updating the Place constructor to include challenges 258
Using the map data to build a game map 258 ■ Bringing all
the pieces together to run the game 262

14.3 Summary 263

15 Views: displaying data 264
15.1 Building a fitness app—displaying the latest user

data 265
Creating your first fitness app view 266 ■ Using modules to switch
fitness app views 267 ■ What’s next for the fitness app? 268

15.2 The Crypt—moving view code from Player and Place 268
Creating a view for players 269 ■ Creating a view for places 274

15.3 Talking to players—a message view 278
15.4 Summary 279

16 Controllers: linking models and views 280
16.1 Building a fitness app—controllers 281

What does the controller do? 281 ■ Building the fitness app
controller 282 ■ Putting the pieces together for a working
fitness app 283 ■ What’s next for the fitness app? 284

16.2 The Crypt—adding a game controller 284
What does the controller do? 285 ■ Approaching the
controller code 286

CONTENTSxiv
16.3 The Crypt—the structure of the controller code 287
16.4 The Crypt—starting and stopping the game 287

Initializing the game 288 ■ Monitoring player health 288
Updating the display—functions that use the view modules 289

16.5 The Crypt—giving commands and solving puzzles 290
Picking up items with game.get 290 ■ Listing the properties
of a challenge 291 ■ Moving with game.go 292
Licking the leopard with game.use 294

16.6 The Crypt—running the game 296
16.7 The Crypt—what’s next for the app? 298
16.8 Summary 298

PART 3 JAVASCRIPT IN THE BROWSER.........................299

17 HTML: building web pages 301
17.1 HTML, CSS, JavaScript—building a web page 302

Loading the layers 303 ■ Loading the layers in JS Bin 304

17.2 HTML—a very short introduction 304
Starting with an empty page 305 ■ Adding some content 305
Marking up a list 306 ■ Some common HTML elements 307

17.3 Adding content to a web page with JavaScript 309
Getting an element by its id 310 ■ Function declarations 311
What, no JavaScript? 311

17.4 Displaying data from an array 311
17.5 The Crypt—displaying players and places with

web views 314
Updating the player and place view modules—the render
method 315 ■ Updating the player and place view modules—
the listings 317 ■ Using JavaScript’s strict mode 318
Loading modules and adding placeholders in the HTML 318
Adding a touch of CSS 319 ■ Playing the game 320
Preparing the message view 320

17.6 Summary 321

18 Controls: getting user input 323
18.1 Working with buttons 324

Adding a button to a page 324 ■ Writing functions to update the
greeting 325 ■ Listening for clicks 325

CONTENTS xv
18.2 Using a select element to choose an option 327
Adding a select element to the page 328 ■ A function to rate movies
and a button to call it 329

18.3 Reading user input with text boxes 330
Adding a text box to the page 331 ■ Adding an unordered
list to display the comments 332 ■ Getting references to the
new elements 332 ■ Updating the rateMovie function 332
Styling the examples with CSS 334

18.4 The Crypt—player commands via a text box 334
Adding controls to the page 335 ■ Mapping text box entries
to game commands 336 ■ Issuing orders with split, join, pop,
and shift 336 ■ Deciding between options with switch 338
Making it so—listening for button clicks 339
Enter The Crypt 340

18.5 Summary 341

19 Templates: filling placeholders with data 343
19.1 Building a news page—breaking news 344

Comparing the news item data and HTML 345 ■ Constructing
the HTML by string concatenation 345 ■ Designing with HTML
templates 346 ■ Using script tags for templates 346

19.2 Replacing one string with another 347
Chaining calls to replace 348

19.3 While loops—replacing a string multiple times 349
Repeating code while a condition is met 350 ■ The while
loop 351 ■ Replacing a string while it can be found 352
Replacing strings with regular expressions 353

19.4 Automating placeholder replacement for templates 353
Matching template placeholders with object properties 353
Filling all of the placeholders for each key 355 ■ Building a list
of items using a template 355

19.5 Building a news page—news just in 357
Creating the templates and data modules 357 ■ Importing the
modules 359

19.6 The Crypt—improving the views 360
Creating HTML templates for all of the views 361 ■ Updating the
views to use the new templates 362 ■ Enter The Crypt 365

19.7 Summary 365

CONTENTSxvi
20 XHR: loading data 367
20.1 Building a fitness app—retrieving user data 368

Locating the user data 368 ■ Loading the user data—an outline 370
Loading the user data—the XMLHttpRequest constructor 370
Loading the user data—parsing the XHR response with JSON.parse 372
Loading JS Bin data—a handy function 373 ■ Building the fitness
app 374 ■ The fitness app—what’s next? 376

20.2 JSON—a simple data format 377
Converting JSON into objects and arrays with JSON.parse 378

20.3 The Crypt—loading a map on demand 378
Specifying exits with JS Bin file codes 379 ■ Using a cache—load
each place only once 380 ■ Replacing the Map Data and Map
Builder modules with Map Manager 380 ■ Updating the game
controller to use the Map Manager 383 ■ Building the game
page 384 ■ Enter The Crypt 386

20.4 Summary 386

21 Conclusion: get programming with JavaScript 387
21.1 Working locally with files 387

Writing code 388 ■ Saving files 388 ■ Opening your pages
in a browser 390 ■ Concatenating and minifying files 390

21.2 Getting help 391
21.3 What next? 392

The companion site 392 ■ Books 392 ■ Sites 392
Practice makes permanent 392

21.4 Summary 393

22 Node: running JavaScript outside the browser
available online at www.manning.com/books/get-programming-with-javascript

23 Express: building an API
available online at www.manning.com/books/get-programming-with-javascript

24 Polling: repeating requests with XHR
available online at www.manning.com/books/get-programming-with-javascript

25 Socket.IO: real-time messaging
available online at www.manning.com/books/get-programming-with-javascript

index 395

http://www.manning.com/books/get-programming-with-javascript
http://www.manning.com/books/get-programming-with-javascript
http://www.manning.com/books/get-programming-with-javascript
http://www.manning.com/books/get-programming-with-javascript

foreword
When John emailed me to ask if I would write a foreword for Get Programming with
JavaScript, I have to admit the main thing that got me on the hook was that he had
used JS Bin throughout the book to let readers try out live demos. JS Bin was created
in 2008 as a place for programmers to collaborate, test, debug, experiment, and share.
Education is close to JS Bin’s heart, so John’s background as a teacher and his practi-
cal approach seemed like a great fit with its ethos and purpose. I’m a firm believer
that getting your hands dirty with real code is a great way to learn, and being encour-
aged to create, extend, play, and rewrite, all in a safe, no-mistakes-barred space,
looked like a good idea for a beginners’ programming book.

 As the developer of JS Bin, an application created with JavaScript, I’m always
excited to see JS Bin being used to teach beginners, and that’s exactly what John does
with this book. It goes without saying that different people in different contexts take
different lengths of time to learn programming. But they all benefit from a practical
approach. JS Bin, as a free resource requiring no installation, provides an instantly
accessible environment in which to learn, and this book provides the guidance to get
started, the support to keep practicing, and the encouragement to enjoy the adventure.

 I remember seeing object dot notation well over 10 years ago and wondering how I
was supposed to Google “What does . mean?” If I’d had John’s gentle and thorough
introduction to JavaScript back then, I would have saved myself a lot of pain wading
through many failed search attempts! He doesn’t cover everything, but he takes his
time with key concepts, showing patience and consideration for readers and encour-
aging them to stretch their knowledge and build their skills. The variety of examples
xvii

FOREWORDxviii
really helps; there’s lots to get your teeth into, but also plenty of support and sugges-
tions for further practice. Don’t get lost in The Crypt—trust your guide. It builds into a
substantial project and should help you see how little pieces can make big apps.

 I’ve had the privilege of creating a number of tools for the programmer commu-
nity, and a number of JavaScript tools in particular. Programming lets us make things
for fun, for profit, and for others, and it’s wonderful to welcome newcomers to the
fold; who knows what great ideas they’ll have as they build the next big thing (or the next
small thing!)? I’m thrilled that their first steps on such an exciting path will be on
JS Bin. Welcome! Create bins for your code, tinker, share, and build up your bank of
modules. Get Programming with JavaScript shows you how to manage your code bins and
combine them into bigger projects. (You even get to play with the HTML and CSS
panels on JS Bin!)

 Enjoy the book, dear reader. I expect that by the end of it, you’ll have a firm grasp
of how to write JavaScript.

REMY SHARP

FOUNDER OF JS BIN

preface
I started programming using the BASIC language on a Commodore VIC-20 in 1982. It
had 3.5 KB of RAM, and programming involved me copying a program from a maga-
zine, instruction by instruction and line by line. The process was time-consuming and
error-prone, but it certainly built focus and attention to detail! Rather than cut-and-
paste, it was read-and-type; but eventually, the program was transferred from the
printed page to the computer’s memory. Then the moment of truth … and alas, it
never worked the first time. And that’s where my learning really began.

 Staring at the code, trying to make sense of the instructions and follow the flow of
the program as it jumped from line to line, I had to think carefully and patiently about
what was going on. Not everything made sense—sometimes squeezing a program into
3.5 KB required some seriously supple code gymnastics—but, bit by bit, the program’s
secrets would start to reveal themselves. Sometimes my typos stopped the program from
running; sometimes there were mistakes in the code itself. Most of the time, but not
always, I eventually got the program to run.

 Half the time, the program would turn out to be rubbish! I’d reach out and hit
the VIC-20’s off switch, and the program would be gone forever. (It took five minutes
and a cassette-tape recorder to save, and some programs just weren’t worth it.) I
wasn’t usually upset, and I didn’t see it as a waste of time; from the start, I was amazed
by the transformation of text into a working program (even a rubbish one) on the
computer screen.

 Today, in 2016, with our smartphones, tablets, drones, and AI Go champions, that
sense of wonder has grown even stronger. Programming is magical and transformative.
xix

PREFACExx
Even knowing how it works, I still love how my typed instructions turn into a working
website, a fun game, or a useful utility.

 As a teacher in the United Kingdom, I’m privileged to be able to teach 16- and
17-year-olds programming. My philosophy is to let them get programming from lesson
one: to enter code and see the result as soon as possible. I want them to be curious
and experiment at all times. It’s great to see their eyes widen and their smiles grow as
they start their adventures in code and realize they can convert imagination into real-
ity. Online code-editing environments such as JS Bin allow them to quickly try out
ideas and build projects piece by piece. They don’t learn a long list of language fea-
tures before beginning; they learn a few concepts at a time, often in response to getting
stuck but also directly from me (they don’t know what they don’t know), and they prac-
tice and experiment before moving on. Their skills build day by day and week by week,
and code that might have seemed like cryptic hieroglyphs at the start of the course
becomes second nature by the end. It’s great to be a part of that learning process.

 In addition to being a teacher, I’m also a programmer and develop education
applications, including ones for organizing, sharing, and booking resources; creating
online handbooks; planning lessons; managing timetables; and generating quizzes.
It’s great to see people using the applications as part of their day-to-day work; I’m
lucky to understand the target audience, being one of them myself, and to see first-
hand my applications used over an extended period—that’s great feedback!

 I’ve reviewed a number of book manuscripts for Manning. Having seen my bio
describing me as a programmer and a teacher, Manning suggested that I write a book
of my own. Get Programming with JavaScript is my attempt at translating my approach to
teaching programming into book form. It’s packed with code listings to get you think-
ing about the concepts as you progress, and there are plenty of exercises and supple-
mentary materials online, as detailed shortly. I hope it fires your imagination and gets
you started on your own programming adventures. Good luck, and have fun!

acknowledgments
Thank you to Robin de Jongh at Manning for suggesting I write a book and to my edi-
tor Helen Stergius for her patience, advice, and support throughout the writing pro-
cess. Thanks also to all of the people who reviewed the book and provided excellent
feedback to make it better, including Philip Arny, Dr. Markus Beckmann, Rocio
Chongtay, Sonya Corcoran, Philip Cusack, Alvin Raj, Conor Redmond, Ivan Rubelj,
Craig Sharkie, and Giselle Stidston; in particular, thanks to Ozren Harlovic, Chuck
Henderson, Al Sherer, Brian Hanafee, and Romin Irani for their attention to detail,
honest reactions, and constructive suggestions.

 I’d also like to thank Remy Sharp, the creator of JS Bin, for responding to my ques-
tions and requests quickly and positively, for being kind enough to agree to write the
foreword for this book, and for creating JS Bin!

 Finally, I want to thank the people at Manning who made this book possible: pub-
lisher Marjan Bace and everyone on the editorial and production teams, including
Janet Vail, Mary Piergies, Tiffany Taylor, Linda Recktenwald, Dennis Dalinnik, Elizabeth
Martin, Bonnie Culverhouse, and many others who worked behind the scenes.
xxi

about this book
Get Programming with JavaScript is a book for beginners, for those with no programming
experience. It makes extensive use of online code listings on the JS Bin website, a
sandbox where you can experiment with the code and see the results instantly. There’s
no setup or installation required; if you’ve got internet access, you can just get pro-
gramming straight away. If you don’t have internet access, don’t worry, the printed list-
ings include helpful annotations, and all the ideas are explained in the text.

 In addition to shorter examples to illustrate the concepts covered, there is an
ongoing example—a text-based adventure game called The Crypt—that you build as
you progress through the book.

Who should read this book
If you are happy working with computers, using a variety of applications, and saving
and organizing your files but haven’t written programs before and would like to learn
how, then this book is for you. It doesn’t try to cover all of JavaScript, or even all parts
of JavaScript; it helps you to get programming with lots of practical examples and
exercises that encourage you to think and explore. If you’re already a programmer
and are looking for a complete JavaScript reference, then move along. But if you
want a patient introduction to the language, then it’s worth sticking around; a strong
understanding of the basics will make it much easier to access some of the other excel-
lent books for programmers.
xxii

ABOUT THIS BOOK xxiii
Roadmap
Get Programming with JavaScript has 21 printed chapters; an additional four chapters
are available online only from the publisher's website at www.manning.com/books/
get-programming-with-javascript. The book makes extensive use of code listings and
exercises, with successive examples building on previous work. I recommend you read
it in order, trying out the examples and exercises online and taking time to under-
stand the ideas presented.

 Part 1 covers some of the core concepts of programming with JavaScript. It sticks
to using the text-based Console panel on JS Bin, letting you focus on the JavaScript
and not worry about web pages and HTML:

■ Chapter 1 looks at programming and programming with JavaScript in particular
before introducing JS Bin, a website where you can get programming right away,
and The Crypt, a text-based adventure game that you build as you progress
through the book.

■ Chapter 2 describes variables, a way of labeling and using values in your pro-
grams. Your variables can hold different types of values, like numbers or text,
but their names must follow certain rules.

■ In chapter 3 you learn how to group values into objects. Just like a first-aid kit can
be passed around as a single object and its contents accessed only when needed,
JavaScript objects can be treated as a single item and their properties accessed
when required.

■ Functions are central to JavaScript, helping you to organize your code and exe-
cute sets of instructions on-demand and multiple times. They are introduced
over four chapters, chapters 4 to 7, so that you get a firm grasp of how to define
them and use them, how to pass data to them and from them, and how they
work beautifully with objects.

■ Chapter 8 shows you how to create ordered lists, or arrays, of values. Whether
they hold blog posts, calendar events, users, functions, or movie reviews, lists
are very common in programming, and you learn how to create them and
access, manipulate, and remove their items.

■ Objects are at the heart of JavaScript, and programs often create many objects;
a calendar could have thousands of events and an adventure game dozens of
locations, for example. Constructor functions are a way of streamlining the cre-
ation of many similar objects, and chapter 9 investigates why they’re useful and
how you define them and use them.

■ In chapter 10 you meet square bracket notation, an alternate method of access-
ing the values stored in JavaScript objects. Armed with this more flexible way
of getting and setting object properties, you write some example programs
that can cope with unpredictable values that may appear in external data or
user input.

http://www.manning.com/books/get-programming-with-javascript.
http://www.manning.com/books/get-programming-with-javascript.

ABOUT THIS BOOKxxiv
Having covered some key, core concepts in part 1, you learn how to better organize
your code in part 2:

■ Chapter 11 discusses the dangers of global variables, variables that can be seen
throughout a program, and the benefits of local variables, variables defined
inside functions. Along the way, you consider who might use your code and the
difference between an interface and an implementation.

■ If you want to find out about conditions, then chapter 12 is the place to go. Only
executing code if a condition is met adds flexibility to your programs and lets
you check input from users before using it.

■ As your programs grow, it usually makes sense to organize the pieces that make
them up into modules, separate files that can be combined and swapped to
improve versatility, focus, portability, and maintainability. Chapter 13 considers
ways of modularizing your code, including namespaces and the snappily titled
immediately invoked function expressions.

■ Having learned techniques for creating modules, in chapters 14, 15, and 16 you
see three different roles that modules might play. Models help you work with
data (calendar events, blog posts, or movie reviews, for example); views present
that data to the user (as text, HTML, or a graph, for example); and controllers
work with the models and views, responding to user actions and updating the
models before passing them to the views for display.

Part 3 covers using JavaScript to update web pages and respond to user input via but-
tons, drop-down lists, and text boxes. It also introduces templates for displaying repet-
itive, dynamic data, and techniques for loading that data into an existing page:

■ Chapter 17 has a brief introduction to HyperText Markup Language (HTML), a
way of specifying the structure of your content in a web page (headings, para-
graphs, or list items, for example) and of loading further resources like images,
videos, scripts, and style sheets. It then shows how you can use JavaScript to
access and update a page’s content.

■ In order to capture user input, you need to use HTML controls, like buttons,
drop-down lists, and text boxes. Chapter 18 demonstrates how to set up code
that can work with user input and that the program executes when a user clicks
a button.

■ Templates offer a way to design the presentation of data by using placeholders. In
chapter 19 you learn how to include HTML templates in a page and replace
their placeholders with data. You avoid the confusing mess of JavaScript, HTML,
and data all mixed together and create a neat, clear way of populating a web
page with nicely formatted information.

■ Chapter 20 explains how to load further data into a web page by using
XMLHttpRequest objects. Commonly referred to as Ajax, the techniques let you
update parts of a page with fresh data in response to user actions, leading to
more responsive applications.

ABOUT THIS BOOK xxv
■ Chapter 21 wraps up everything in the printed book, discussing text editors and
integrated development environments and how to organize your own files when
creating projects away from JS Bin. It also suggests sources of further learning
about JavaScript and wishes you well on your programming adventures.

Chapters 22–25 are available online only, at www.manning.com/books/get-programming-
with-javascript. They’re more advanced and cover programming on the server with
Node.js and Express.js, polling the server with XHR, and real-time communication with
Socket.IO.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 Most of the code listings in the book include a link to the same code on the JS Bin
website, where you can run the code and experiment with it. The code is also available
on GitHub at https://github.com/jrlarsen/getprogramming and on the book’s Man-
ning.com page at www.manning.com/books/get-programming-with-javascript.

Other online resources
The book’s website at www.room51.co.uk/books/getprogramming/index.html includes
answers to many of the book’s exercises as well as video tutorials, further articles and
guides for learning JavaScript, and links to other resources on the Internet.

About the author
John Larsen is a mathematics and computing teacher with an interest in educational
research. He has an MA in mathematics and an MSc in information technology. He
started programming in 1982, writing simple programs for teaching mathematics in
1993, building websites in 2001, and developing data-driven web-based applications
for education in 2006.

Author Online
Purchase of Get Programming with JavaScript includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access

http://www.manning.com/books/get-programming-with-javascript
https://github.com/jrlarsen/getprogramming
http://www.manning.com/books/get-programming-with-javascript
http://www.room51.co.uk/books/getprogramming/index.html
http://www.manning.com/books/get-programming-with-javascript

ABOUT THIS BOOKxxvi
the forum and subscribe to it, point your web browser to www.manning.com/books/
get-programming-with-javascript. This page provides information on how to get on
the forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the Author Online remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions lest his interest stray!
The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

https://manning.com/books/get-programming-with-javascript
https://manning.com/books/get-programming-with-javascript

Part 1

Core concepts
on the console

Get Programming with JavaScript starts by introducing the key concepts you
use in every program. The ideas presented form the foundation for all the subse-
quent code you write. The discussion starts gently and takes its time, with plenty
of examples. There is an overarching theme of organization, which runs through-
out the book; you see how to store and retrieve values with variables, group val-
ues with objects and arrays, and group instructions with functions.

 By the end of part 1, you’ll have built a working version of an adventure game
called The Crypt. Players will be able to explore a map of locations and move from
room to room and tomb to tomb, collecting treasure. Chapter 1 sets the scene,
introducing programming, JavaScript, and JS Bin, the online code environment in
which your adventures take place. Let the games begin!

Programming,
JavaScript, and JS Bin
Get Programming with JavaScript is a practical introduction to programming. Through
hands-on code samples coupled with carefully paced explanations, supporting
video tutorials, and a variety of examples, this book will help you build knowledge
and skills and get you on your way to coding expertise.

 This chapter sets the scene with a brief overview of programming and program-
ming with JavaScript and then an introduction to JS Bin, the online programming
sandbox you’ll be making full use of while you learn. Finally, you’ll meet The Crypt,
our ongoing context for the concepts covered in the book.

1.1 Programming
Programming is about giving the computer a series of instructions in a format it
understands. Programs are everywhere, running Mars rovers, the Large Hadron
Collider, engine management systems, financial markets, drones, phones, tablets,

This chapter covers
■ Programming
■ JavaScript
■ JS Bin
■ Our ongoing example: The Crypt
3

4 CHAPTER 1 Programming, JavaScript, and JS Bin
TVs, and medical equipment. The power and versatility of programs are astonishing.
Programs can be a few lines long or millions of lines long, with complex solutions
built from simple building blocks.

 Deep down in a computer’s electronics is a land of binary, counters, registers, bus-
ses, and memory allocation. There are low-level programming languages that let us
work in that land, known as machine code and assembly language. Luckily for us,
high-level languages have been created that are much easier to read, follow, and use.
We can write code that’s almost understandable by anyone; here’s some pretend code
(pseudocode) that’s close to what high-level languages allow:

increase score by 100
if score is greater than 5000 print "Congratulations! You win!"
otherwise load new level

Different languages set out how you might write such code; some use more symbols
than others, some more natural words. Here’s how it might look in JavaScript:

score = score + 100;
if (score > 5000) {
 alert("Congratulations! You win!");
} else {
 loadNewLevel();
}

The parentheses and curly braces and semicolons are all part of the language’s syntax, its
rules for setting out the code so it can be understood by the computer. The code you
write will be automatically translated into low-level code for the computer to execute.

 In the previous JavaScript snippet is the instruction loadNewLevel();, to load a
new level in the game, presumably. Somewhere else in the program will be more code
with instructions outlining, step-by-step, how to load a new level. Part of the art of pro-
gramming is breaking larger programs into smaller pieces that perform specific jobs.
The smaller pieces are then combined to fulfill the purpose of the main program.

 There are many, many programming languages. Some you may have heard of are
Java, C, PHP, Python, and Swift. Let’s take a look at why you might choose JavaScript.

1.2 JavaScript
JavaScript is an incredibly popular programming language, mostly seen in web brows-
ers but gaining popularity in other contexts. On web pages it adds interactivity, from
simple animation effects to form validation to full-blown single-page applications.
Servers—programs that make files, web pages, and other resources available on the
internet—are now written using JavaScript with Node.js. Other programs can be
scripted with JavaScript, like Photoshop and Minecraft, and some databases store
JavaScript and let you query data with JavaScript. And as more and more network-
enabled objects are added to the Internet of Things, JavaScript is becoming more
popular for programming sensors, robots, drones, and Arduino-style electronics.

5JS Bin
 Learning to program gives you a great skill that’s versatile, useful, stimulating, cre-
ative, fun, rewarding, and in demand. Learning to program with JavaScript puts one
of the world’s most widely used languages at your fingertips, letting you develop appli-
cations for all manner of uses, devices, platforms, and OSes.

1.3 Learning by doing and thinking

Learning follows thinking. The philosophy of Get Programming with JavaScript is that by
experimenting with programs in an online sandbox, finding out firsthand what works
and what doesn’t, and by attempting challenges, you’ll have to think carefully about
the concepts in each chapter. That thinking will lead to understanding and learning.

 The sandbox lets you run programs and get instant feedback. Sometimes the feed-
back will be unexpected and force you to question what you thought you knew. Some
ideas may click into place quickly whereas others could take longer; careful consider-
ation and further experimentation may be needed. Curiosity, commitment, and resil-
ience are key attitudes when learning anything, and they’ll certainly help you to be a
better programmer.

 That’s not to say learning to program will be a chore! Far from it. Even after more
than 30 years of programming, I still find the transformation of code into a useful
and/or fun application to be almost magical. That lines of simple statements, when
combined, can accomplish such a variety of outcomes is astonishing. And seeing oth-
ers use something you’ve created to be more productive or more organized or just to
have more fun is a privilege and a pleasure.

 So be prepared for an adventure of discovery, and don’t be disheartened if you
find some concepts tricky at first. Take your time, do the exercises, and don’t forget
the resources on the Get Programming with JavaScript website; it has links to listings,
solutions, videos, and further reading at www.room51.co.uk/books/getProgramming/
index.html. Learning to program is worth the effort.

1.4 JS Bin

JavaScript is most commonly run by a web browser. The browser loads a web page
from a server, and that page may include JavaScript code or a link to code the browser
then fetches. The browser steps through the code, executing the instructions. For part
1 of Get Programming with JavaScript, you avoid the extra considerations of writing and
loading web pages and linking to code files. You keep your focus on the JavaScript lan-
guage itself. To do that, you make use of JS Bin, a free online service.

 JS Bin is an online sandbox for developing and sharing web pages and JavaScript
programs. All of the code listings in this book are available on JS Bin (www.jsbin.com)
to give you hands-on practice with the code and to let you experiment and learn.

 When you first visit the site, you’ll see a header section with a picture of Dave the
BinBot and some helpful links to get you started, as shown in figure 1.1. Feel free to
explore, but don’t be put off by any complicated information you might find. Once

http://www.room51.co.uk/books/getProgramming/index.html
http://www.room51.co.uk/books/getProgramming/index.html
http://www.jsbin.com

6 CHAPTER 1 Programming, JavaScript, and JS Bin
you’ve finished exploring, close the header by clicking the X to the left of Dave. (You
can close any welcome messages or other messages that JS Bin sometimes shows as well.)

1.4.1 JS Bin panels

JS Bin is a tool for developing web pages and applications. In addition to the Info
panel at the top, it has five panels available for display: HTML, CSS, JavaScript, Con-
sole, and Output. Clicking a panel’s name on the JS Bin toolbar toggles the panel on
or off. In part 1 you work with just the JavaScript and Console panels, part 2 will use
the HTML panel, and part 3 will add the CSS and Output panels. You’ll be using only
the JavaScript and Console panels to begin with, so toggle those two panels on and the
others off; see figure 1.2.

HTML
HTML is used to structure the content of web pages. Text, images, video, and forms
are examples of content.

Figure 1.1 JS Bin showing the HTML, CSS, Output, and Info panels

7JS Bin
CSS
Cascading Style Sheets let you specify how your content should be presented. You can
define background color, font details, margins, sizes, and so on.

JAVASCRIPT

JavaScript lets you add behavior and interactivity to your web pages. Or you can use it
to write programs not in the context of a web page.

CONSOLE

The console can be used by a program to display information for users and develop-
ers. Warnings and errors about a program may be shown here. The console is interac-
tive; you can type into it to find out about the state of a program. It’s not normally
used in finished applications, but you’ll make good use of it as a quick and simple way
of interacting with your programs as you learn.

OUTPUT

The Output panel shows a preview of the web page defined in the HTML, CSS, and
JavaScript panels. It shows what a visitor to a page would normally see in a browser.

1.4.2 Following the code listings on JS Bin

You’ll write programs by adding lines of code to the JavaScript panel on JS Bin. The
programs will start simply and slowly increase in complexity as you cover more fea-
tures of the language. For most of the code listings in part 1 of the book, you can test
the code on JS Bin by following these steps:

1 Select New on the File menu on JS Bin.
2 Toggle the panels so that the JavaScript and Console panels are visible.
3 Enter code in the JavaScript panel.
4 Click Run.
5 Check the result on the Console panel.

Figure 1.2 JS Bin showing the JavaScript and Console panels.

8 CHAPTER 1 Programming, JavaScript, and JS Bin
Figure 1.3 shows the steps on a screenshot from JS Bin.
 Most of the listings in the book also have a link to the same code on JS Bin. The

listings on JS Bin include extra information and exercises related to the code, dis-
cussed further in sections 1.4.4 and 1.4.5.

1.4.3 Logging to the console

At various points you want programs to output information by displaying it on the
Console panel. To display information on the console, use the console.log com-
mand. Running the program in this listing displays the following on the console:

> Hello World!

console.log("Hello World!");

You place the message to be displayed between quotation marks, within the parentheses.
 Notice that the listing title contains a JS Bin link. Click the link to see the live code

on JS Bin. To execute the code in the JavaScript panel, click the Run button at the top
of the Console panel. You’ll see your message, “Hello World!”, appear on the console.

Listing 1.1 Using console.log to display information
(http://jsbin.com/mujepu/edit?js,console)

Figure 1.3 The steps for running JavaScript on JS Bin

http://jsbin.com/mujepu/edit?js,console

9JS Bin
 Try clicking Run a few more times. Every time it’s clicked, your code is executed
and “Hello World!” is logged to the console. You can click Clear to clear all the mes-
sages from the console.

 When following links to code on JS Bin, the program may run automatically. You
can switch off auto-run in your preferences on JS Bin if you sign up for an account.

1.4.4 Code comments

Along with the code statements, the JS Bin listings for this book include comments, text
that’s not part of the program but is useful for explaining what the code does. Here’s
the first block comment from listing 1.1 on JS Bin:

/* Get Programming with JavaScript
 * Listing 1.1
 * Using console.log
 */

As well as block comments, which can span multiple lines, you’ll sometimes see single-
line comments:

// This is a single-line comment

On JS Bin, the comments are usually shown in green. Programmers add comments to
their code if they feel it needs some explanation to be understood by other program-
mers. When a program is executed, the computer ignores the comments.

1.4.5 Further Adventures

Most code listings for Get Programming with JavaScript on JS Bin come with a small set
of exercises, called Further Adventures, included as comments after the code. Some
are easy, some are repetitive, and some are challenging. The best way to learn pro-
gramming is to program, so I urge you to jump in and try the challenges. You can
get help on the Manning Forums, and solutions to many of the tasks are given on
the book’s websites at www.manning.com/books/get-programming-with-javascript and
www.room51.co.uk/books/getProgramming/index.html.

1.4.6 Error messages

As you add code to the JavaScript panel, JS Bin is continuously checking for errors.
You’ll see a red error section appear at the bottom of the JavaScript panel. Don’t
worry about it until you’ve finished adding a line of code. If the error section is still
there, click it to see the error messages.

 For example, try deleting the semicolon from the end of the line of code in list-
ing 1.1. Figure 1.4 shows the error that JS Bin displays in response to the deleted
semicolon.

https://www.manning.com/books/get-programming-with-javascript
http://www.room51.co.uk/books/getProgramming/index.html

10 CHAPTER 1 Programming, JavaScript, and JS Bin
The semicolon signals the end of a line of code. Each line of code, ending with a semi-
colon, is called a statement. If you stop typing but the line does not end with a semico-
lon, JS Bin will complain. The program may still run, and JavaScript will try to insert
semicolons where it thinks they should go, but it’s much better practice to put the
semicolons in yourself; the errors in JS Bin are encouraging good practice.

 JS Bin does its best to give error messages that help you fix any problems. Delete
more characters, one by one, from the end of your line of code and watch as the error
messages update.

1.4.7 Line numbers

The error message in figure 1.4 told you the line number where the error occurred.
You had only one line of code, so the error was on line 1. Programs can get quite long,
so it’s helpful to have line numbers you can see. You don’t add line numbers by hand;
your text editor, in this case JS Bin, does that automatically. They’re not part of the
program; they help you while writing and testing the code. Figure 1.5 shows a longer
program with a couple of errors. Don’t worry about understanding the code for now,
but see if you can spot the errors reported by JS Bin in the figure. Without the line
numbers it would be much harder, especially if the program were longer.

 To toggle the display of line numbers on JS Bin, double-click the word JavaScript at
the top left of the JavaScript panel (see figure 1.5). A menu will open and close as you
double-click, but the line numbers should switch from hidden to visible (or vice versa)
as well. You can also switch on line numbers in your JS Bin profile, if you’ve registered.

1.4.8 Get an account

It’s worth signing up for a free account on JS Bin. Your work will be saved and you’ll
be able to set a lot more preferences. As you start to write your own programs, it’s a
great place to try out your ideas and get immediate previews and feedback.

Figure 1.4 The JS Bin error section (closed and then open)

11The Crypt—our running example
1.5 The Crypt—our running example
Throughout the book, you’re developing a text-based adventure game called The
Crypt. Players will be able to explore locations on a map, moving from place to place,
picking up items to help them solve challenges and get past obstacles. The last section
of each chapter will use what you covered in the chapter to develop the game further.
You’re able to see how the programming concepts help you build the pieces that are
then combined to produce a large program.

1.5.1 Playing The Crypt

The game will display a description of a player’s current location along with any items
that are found there and any exits, as shown in figure 1.6.

 Players can type in commands to move from place to place, pick up items they dis-
cover, and use the items to overcome challenges.

 You need to write code for all of the different elements within the game. But don’t
worry—you take it step by step, and I’ll introduce what you need to know as you prog-
ress. You can play the game on JS Bin at http://output.jsbin.com/yapiyic.

Figure 1.5 Line numbers are helpful when finding errors.

http://output.jsbin.com/yapiyic

12 CHAPTER 1 Programming, JavaScript, and JS Bin
1.5.2 Steps for building The Crypt

In part 1, while learning some of the core concepts in JavaScript, you write code to
represent the players and the places in the game and to let players move from place
to place and pick up items they find. Figure 1.7 shows the components that you’ll cre-
ate for Players, Places, Maps, and the Game as a whole. Don’t worry about all of the
terms in the figure—you’ll cover them in detail as you progress through the book.

Figure 1.6 Playing The Crypt

player variables

Players

a player object

showing player info

player items

Player Constructor

Places Maps

place objects

place items

place exits

Place Constructor

showing place info

linking places via exits

Game

render

get

go

Figure 1.7 Game elements in The Crypt for part 1

13The Crypt—our running example
A similar figure will be used in each chapter to highlight the ideas being discussed in
the context of the whole game.

 Both parts 1 and 2 will use the console on JS Bin to display game information and
to accept input from users. Table 1.1 shows how the game elements correspond to the
JavaScript being covered in part 1.

Part 2 adds challenges for players, blocking exits until the players use appropriate
items to solve the puzzles. The programming focus is more about organizing your
code, hiding how it works, checking user input, and building modules that you can
reuse and swap to make the project more flexible.

 Figure 1.8 shows how the game is split into modules for map data, constructors
that you use to create players and places, views for displaying information on the con-
sole, and a controller for running the game and linking all of the pieces. Again, the
figures are presented here to give a sense of what to expect and how the full game is

Table 1.1 Game elements and JavaScript in part 1 of The Crypt

Game element Task JavaScript Chapter

Players Deciding on the information we need to
know about each player

Variables Chapter 2

Collecting player information in one
place

Objects Chapter 3

Displaying information about players on
the console

Functions Chapters 4–7

Creating a list of items collected by
each player

Arrays Chapter 8

Organizing player creation code Constructors Chapter 9

Places Creating lots of places to explore, all
with a similar structure

Constructors Chapter 9

Joining places with exits Square bracket notation Chapter 10

Game Adding simple functions for movement,
collecting items, and displaying infor-
mation

Square bracket notation Chapter 10

Maps Joining places with exits Square bracket notation Chapter 10

14 CHAPTER 1 Programming, JavaScript, and JS Bin
made up of smaller building blocks—you’re not expected to understand all of the
terms at this point. You are allowed to be curious and excited! Each building block will
be fully explained over the next 400 pages; take your time to explore the concepts and
play with the code.

 Part 3 updates the display to use HTML templates, modifies the game to load data
while it’s running, filling the templates with player and place information, and intro-
duces text boxes and buttons so that players can enter commands via a web page (fig-
ure 1.9).

Part 4, available online, shows how game data can be stored on a server using Node.js.

1.6 Further examples and practice
Although The Crypt is our ongoing context for learning JavaScript, each chapter
includes other examples to show you concepts at work in a variety of situations. Some
of the smaller examples will also be developed as you progress, letting you see how the

Player

Place

playerView

placeView

messageView

Controller

Utility

spacer

Map data

Map builder

Map

Model Constructors

Views

Controller

Figure 1.8 Game elements in The Crypt for part 2

playerView

placeView

messageView

Map

Map Manager

Templates

Bin Data

Utilities - gpwj Player

Place

Model Constructors

Views

Controller

Controller

Commands

Figure 1.9 Game elements in The Crypt for part 3

15Summary
new concepts help to improve the examples. In particular, you’ll look at a quiz app, a
fitness-tracking app, a movie ratings web page, and a news headlines page.

1.7 Browser support
Browsers are evolving all of the time. Some of the JavaScript listings in Get Program-
ming with JavaScript may not work in older browsers (Internet Explorer 8 and earlier,
for example). The discussions on the book’s website will provide alternative meth-
ods to get code working for browsers that aren’t happy with the main methods shown
in the listings.

1.8 Summary
■ Programs are sets of instructions for computers to follow.
■ High-level languages let us write instructions that are easier to read and

understand.
■ JavaScript is one of the most widely used programming languages in the world.

Associated most strongly with adding interactivity to web pages, it’s also used in
server-side programming, as a scripting language for applications, and as a way
of programming robots and other devices.

■ Learning follows from thinking. So, get involved in the practical examples in
the book and be curious, committed, and resilient.

■ JS Bin, an online code sandbox, will help you to focus on the JavaScript and
give quick feedback as you experiment and practice.

■ Our main running example is The Crypt. It gives you a context for learning pro-
gramming concepts and for building a relatively complicated program from
simple elements.

■ Further examples will help you to gain depth through breadth and to appreci-
ate how the concepts you learn are applied in a wider variety of situations.

Variables: storing data
in your program
Get Programming with JavaScript has been written as a gentle introduction to pro-
gramming. This chapter, then, is a gentle introduction to a gentle introduction. As
far as adventures go, you hardly leave the house. You can think of it as the packing
stage for your journey, vitally important—you don’t want to get to the airport without
your passport or to the Oscars without your selfie stick—but not the main event.

 Almost without exception, programs store, manipulate, and display data. Whether
you’re writing a system for blogging, analyzing engine performance, predicting the
weather, or sending a probe to land on a comet in 10 years’ time, you need to con-
sider the data you’ll use and what kinds of values that data might take. To work with
data in your programs, you use variables.

This chapter covers
■ Storing and using information with variables
■ Declaring variables
■ Assigning values to variables
■ Displaying variable values on the console
16

17Declaring variables and assigning values
2.1 What is a variable?
A variable is a named value in your program. Whenever you use the name in the pro-
gram, it’s replaced with the value. You could create a variable called score and give it
the value 100. Then, if you tell the computer to “display the score,” it will display 100.
Now, variables can change, hence the name, so later in the program, maybe in
response to some action a player takes, you can update the score. If you add 50 to
score and tell the computer to “display the score,” it will now display 150.

 So how can you use JavaScript to make this magic happen?

2.2 Declaring variables and assigning values
Letting the computer know about information you’d like to store requires two steps:

1 You need to set a name you can use to refer to your data in the program, like score
or playerName or taxRate.

2 You need to link the name with the value you want to store: something like set score
equal to 100 or make ‘George’ the playerName or let the tax rate be 12%.

In section 2.2.3, you’ll see how both steps, giving a variable a name and giving it a
value, can be completed in a single JavaScript statement. For now, you take things
slowly and use a separate statement for each step.

2.2.1 Declaring variables

You’ve been dreaming of making it big with your design for the next mobile app
craze, The Fruitinator! Players are sent back in time to splat fruit with their Smoothie
9mm, racking up record scores as they go. Your program needs to track those scores.
That means setting up a variable.

 Registering a name to represent a value is called variable declaration. You declare a
variable by using the var keyword. The following listing shows the code statement
needed to declare a variable called score.

var score;

The var keyword tells the computer to take the next word in the statement and turn it
into a variable. Figure 2.1 annotates the code statement from listing 2.1.

Listing 2.1 Declaring a variable
(http://jsbin.com/potazo/edit?js,console)

var score;

The var keyword

You choose the variable name

End each statement
with a semicolon

Figure 2.1 Declaring a variable

http://jsbin.com/potazo/edit?js,console

18 CHAPTER 2 Variables: storing data in your program
That’s it! You’ve declared a variable called score ready for some splatted fruit action.
It’s the very first line of a fruit-based system that might just destroy humanity. Let’s
start scoring points.

2.2.2 Assigning values to variables

Your program now knows about the variable score. But how do you assign it a value?
You use the humble equals symbol, =. (Actually, in JavaScript, it’s not so humble. It
turns up all over the place, performing a number of important jobs. A smooth opera-
tor.) Figure 2.2 illustrates the equals symbol at work, with listing 2.2 showing its use
in context.

var score;
score = 100;

You assign the variable score the value 100. In general,
you assign the value on the right of the equals sign to
the variable on the left of the equals sign (figure 2.3).
When you use the equals sign to assign a value,
JavaScript gives it a special name, the assignment operator.

 You have declared a variable and assigned it a
value. It’s time to display it on the console. The out-
put of the following listing should look something
like this:

> 100

var score;
score = 100;
console.log(score);

Listing 2.2 Assigning a value to a variable
(http://jsbin.com/yuvoju/edit?js,console)

Listing 2.3 Using a variable
(http://jsbin.com/huvime/edit?js,console)

score = 100;

The assignment operator

Variable name

End each statement
with a semicolon

Value Figure 2.2 Assigning a value to a variable

Declare a variable called score
Assign the value 100 to score

score = 100;

You assign the value on the right to
the variable on the left

Variable name Value

Figure 2.3 The equals sign is
called the assignment operator.

http://jsbin.com/yuvoju/edit?js,console
http://jsbin.com/huvime/edit?js,console

19Declaring variables and assigning values
Using the console.log function, introduced in chapter 1, you tell the computer to
display the value of the score variable, whatever it happens to be. You’ve just assigned
it a value of 100, so that value appears on the console.

 Why didn’t you just print out 100 directly, using console.log(100)? Well, the val-
ues of variables usually change during the course of a program. By using a variable
rather than a literal value, your programs can use current values, whatever they hap-
pen to be at the time. The next listing displays the value of score on the console,
changes the value, and displays the new value, like this:

> 100
> 150

var score;
score = 100;
console.log(score);

score = 150;
console.log(score);

You used the same instruction, console.log(score), twice but the program printed
two different values on the console. Your instruction used the variable score. Because
its value had changed, so did the output.

 You assigned the score variable numbers, 100 and then 150, as values. Text is easy
too; just wrap the text you want to assign in quotation marks. The next listing displays
two messages on the console:

> Hello World!
> Congratulations! Your tweet has won a prize ...

var message;

message = "Hello World!";
console.log(message);

message = 'Congratulations! Your tweet has won a prize...';
console.log(message);

Programmers call sections of text strings because they’re strings, or sequences, of char-
acters. As you saw in listing 2.5, to denote a string you place the text inside quotation
marks. The marks can be double, "Hello World!", or single, 'Congratulations!', as
long as they match. Without the quotation marks, JavaScript would try to interpret the
text as instructions or variables.

Listing 2.4 Variables vary
(http://jsbin.com/jasafa/edit?js,console)

Listing 2.5 Assigning text to variables
(http://jsbin.com/hobiqo/edit?js,console)

Declare the message variable

Assign the message variable a piece of
text, using double quotation marks

Assign a new piece of text to message,
using single quotation marks

http://jsbin.com/hobiqo/edit?js,console
http://jsbin.com/jasafa/edit?js,console

20 CHAPTER 2 Variables: storing data in your program
2.2.3 One-step declaration and assignment

You’ve seen how to declare variables and then assign them values in two steps. It’s also
possible to declare a variable and assign it a value in a single statement, as illustrated
in figure 2.4.

Listings 2.6 and 2.7 achieve exactly the same outcome, declaring variables and assign-
ing them values before displaying the following message:

> Kandra is in The Dungeon of Doom

var playerName;
var locationName;

playerName = "Kandra";
locationName = "The Dungeon of Doom";

console.log(playerName + " is in " + locationName);

var playerName = "Kandra";
var locationName = "The Dungeon of Doom";

console.log(playerName + " is in " + locationName);

In listing 2.7, you assign the value on the right side of each equals symbol to the newly
declared variable on the left. In both programs, you create the message displayed on
the console by joining pieces of text using the addition symbol, +. Joining pieces of
text is called string concatenation and + is the string concatenation operator.

 If you know the value of a variable at the time you declare it, then this single-step
approach can be a neat way of assigning the value to the variable. Sometimes, the value
won’t be known at the time of declaration; maybe some calculations need to be per-
formed, user input is required, or you’re waiting for a network response. In that case,
declaration and assignment would be separate. It’s common for programmers to declare
their variables at the top of a program, even if they won’t assign them values until later.

Listing 2.6 Declaring and assigning in two steps
(http://jsbin.com/vegoja/edit?js,console)

Listing 2.7 Declaring and assigning in one step
(http://jsbin.com/dorane/edit?js,console)

var score = 100;

Declare a variable

Assign it a value
Figure 2.4 You declare a variable and assign
it a value in a single statement.

Use the + symbol
to join strings

Declare a variable and assign
a value to it in a single step

http://jsbin.com/vegoja/edit?js,console
http://jsbin.com/dorane/edit?js,console

21Declaring variables and assigning values
2.2.4 Using a variable in its own assignment

When you assign a value to a variable, JavaScript evaluates the expression to the right of
the assignment operator and assigns the result to the variable.

var score;
score = 100 + 50;

JavaScript evaluates the expression, 100 + 50, and assigns the result, 150, to the vari-
able score.

 The values in the expression probably won’t be hard-coded literals like 100 and 50;
they’re more likely to be variables. Here’s an example, using the variables callOut-
Charge, costPerHour, and numberOfHours, to calculate the total cost when hiring a
plumber to do some work:

total = callOutCharge + costPerHour * numberOfHours;

The * symbol is used for multiplication; it is the multiplication operator. You can also use
– for subtraction and / for division.

 Because JavaScript evaluates the expression on the right first, before assigning its
value to the variable on the left, you can even use the current value of a variable to set
its new value. Say a player in your app sensation The Fruitinator! has just splatted a
strawberry; that’s 50 points! The player needs an update.

> Your score was 100
> Great splat!!!
> New score: 150
> Way to go!

Figure 2.5 shows a statement using the current score when assigning the updated score,
and listing 2.8 is your score-updating program.

var score;
score = 100;
console.log("Your score was " + score);

Listing 2.8 Using a variable’s current value to set its new value
(http://jsbin.com/kijuce/edit?js,console)

score = score + 50;

Assign the result to score,
updating its value

Evaluate the expression
using the current value of score

Figure 2.5 Updating a variable with the
result of a calculation involving itself

http://jsbin.com/kijuce/edit?js,console

22 CHAPTER 2 Variables: storing data in your program
console.log("Great splat!!!");
score = score + 50;
console.log("New score: " + score);

console.log("Way to go!");

In the code, you evaluate the expression, score + 50, using the current value of score,
100, to give the result 150. This value, 150, is then assigned to score. Next up for The
Fruitinator! … kumquats. Worth a cool 100 points! Kumquats are tricky. Never trust
a kumquat.

2.3 Choosing good variable names
In all the code listings so far, there was nothing forcing you to give the variables the
names you did. You tried to choose names that would help anyone reading the code
understand the purpose of the variables. You almost have a free choice but must be
careful not to tread on JavaScript’s toes; there are names that JavaScript has set aside
for its own use and further rules governing valid variable names.

2.3.1 Keywords and reserved words

JavaScript has a set of keywords, like var and function, that are part of the language
itself and govern the actions and properties available in every program. It also sets
aside some reserved words that may turn up as keywords in the language in the future.
You can’t use those keywords or reserved words as variable names. Other examples of
keywords are if, switch, do, and yield, and a full list can be found on the Mozilla
Developer Network (http://mng.bz/28d9). But don’t take my word for it. Head over
to JS Bin and try using one of those words as a variable name, as shown in figure 2.6.

Add 50 to the current score
and assign the result back
to the score variable

Figure 2.6 JavaScript has some words that can’t be used as variable names.

http://mng.bz/28d9

23Choosing good variable names
You don’t have to learn the lists of keywords and reserved words; you’ll pick up most
of them as you do more programming, and they usually throw errors when you try to
use them. But do bear them in mind if your program isn’t working and you’re not
sure why.

2.3.2 Rules for naming variables

So now that keywords and reserved words are out, is everything else in? Not quite—
there are a few further rules. Variable names can start with any letter, a dollar sign, $,
or an underscore, _. Subsequent characters can be any of those or numbers. Spaces
are not allowed. Listing 2.9 includes one block of valid names and one block of invalid
names. If you visit the code on JS Bin, you’ll see it reports a long list of errors. Take a
look and try to make sense of them, but don’t worry if you don’t understand them all;
the listing includes invalid names on purpose and JavaScript isn’t happy about it.

var thisIsFine;
var $noProblemHere;
var _underscore56;
var StartWithCapital;
var z5;

var 999;
var 39Steps;
var &nope;
var single words only;
var yield;

JavaScript is case sensitive. Changing the case of characters in a variable name will
give a different variable. score, Score, and SCORE are three different names. These
differences can be hard to spot, so it’s worth trying to be consistent, as discussed in
the next section.

2.3.3 camelCase

You may have noticed the capitalization of letters in the variable names you’ve been
using. Where names like costPerHour, playerName, and selfieStickActivated are
made up of multiple words joined together, the first word is lowercase and the follow-
ing words start with an uppercase character. This is called camel casing and is an
extremely widespread convention that can help to make the names more readable.

 Some programmers choose to separate words within variable names with under-
scores instead, like cost_per_hour, player_name, and selfie_stick_activated. How
you name variables is up to you; it’s part of your programming style. I’ll be sticking
with camel case throughout Get Programming with JavaScript.

Listing 2.9 Valid and invalid variable names
(http://jsbin.com/biqawu/edit?js,console)

These variable
names are valid.

These variable
names are not
allowed.

http://jsbin.com/biqawu/edit?js,console

24 CHAPTER 2 Variables: storing data in your program
2.3.4 Use descriptive variable names

Try to give your variables names that describe what they’re for or what they do. You’re
free to choose the names but costPerHour is much easier to understand than cph.
Other programmers may need to read and update your code in the future, and you’ll
thank yourself when you return to it at some point down the line. As your programs
grow and involve more and more variables, objects, and functions, good variable
names can really help you follow the flow of the program and understand its purpose.
So keep those variable names simple, direct, and descriptive.

 You’ve seen what variables are for, how to declare and assign them, and what
makes for a good name. But how do you know what variables you need in a program?
Analyzing the problem you’re trying to solve and planning out a solution that fits your
users is an important part of program design. In the next section, you take a little time
to consider the information you need to represent the players in your ongoing exam-
ple, The Crypt.

2.4 The Crypt—player variables
As discussed in chapter 1, The Crypt includes a number of elements: players, places,
game, maps, and challenges. You need to consider the properties of all of those ele-
ments as you design and build the game. For now, you focus on the players, as shown
in figure 2.7.

As players move from place to place, what does the program need to know to create
fun and challenging adventures? You may want to keep track of names, health, items
carried, or location. Or maybe hairiness of feet or color of lightsaber. Some of that
information may stay the same during a game and some may change.

player variables

Players

a player object

showing player info

player items

Player Constructor

Places Maps

place objects

place items

place exits

Place Constructor

showing place info

linking places via exits

Game

render

get

go

Figure 2.7 Elements in The Crypt

25Summary
 Part of the art of programming is abstraction, knowing what information to include
and what to leave out. It might be that just how hairy a player’s feet are has a role to
play in the game, but it’s likely to be more than you need to know. You should think
carefully about what data you’ll use as the player completes their quest.

 Table 2.1 shows some possible properties that you may want to include when repre-
senting each player in your program.

You may well need other properties, and you can add and remove properties if neces-
sary. Declaring player properties could go something like this:

var playerName = "Kandra";
var playerHealth = 50;

Part of a programmer’s expertise is being able to model situations and predict which
variables will be needed to complete a program. The more you get right ahead of
time, the less chance there’ll be a need for a big rewrite of your program—nobody
wants that. Just as you don’t want to realize you’ve forgotten your passport at the air-
port, you don’t want to find you’ve overlooked a crucial part of a program when
you’ve written lots of code.

2.5 Summary
■ Variables let you store data for your program to use while it’s running.
■ Declare a variable by following the var keyword with a name:

var costPerHour;

■ Choose simple, descriptive names for your variables, avoiding JavaScript’s key-
words and reserved words.

Table 2.1 Possible player properties

Property What’s it for? Example values

Name Used when displaying player information
and when interacting with other players.

"Kandra", "Dax"

Health Decreased by monsters and poison.
Increased by food and potions.

68

Place Where is the player on the map? "The Old Library"

Hairiness of feet A measure of how well the player copes in
cold conditions, without boots.

94

Items Keeping track of the items a player has
picked up.

"A rusty key", "A purple
potion", "Cheese"

26 CHAPTER 2 Variables: storing data in your program
■ Assign values to variables with the assignment operator, the equals symbol =:

costPerHour = 40;

You assign the value on the right of the equals sign to the variable on the left.
■ Use variables in expressions:

total = callOutCharge + costPerHour * numberOfHours;

■ As part of the planning for your programs, consider what variables you’ll need
and what kinds of data they’ll hold.

Objects:
grouping your data
In chapter 2 you saw how to declare variables and assign them values, and you con-
sidered the variables you could use to model a player in The Crypt. As your pro-
grams grow, so does the number of variables you use; you need ways to organize all
this data, to make your programs easier to understand and easier to update and
add to in the future.

 Sometimes it makes sense to group items and see them as a whole. Consider a
first-aid kit; we happily treat it as a single item—“Have you packed the first-aid
kit?” “Pass the first-aid kit.” “We need the first-aid kit, now!”—but will quickly
switch focus to its contents when the need arises—“Pass the antiseptic and the
bandages from the first-aid kit, please.” A number of items is neatly encapsulated
by a single object.

This chapter covers
■ Organizing information with JavaScript objects
■ Creating objects
■ Adding properties to objects
■ Accessing properties using dot notation
■ Examples of objects
27

28 CHAPTER 3 Objects: grouping your data
 This chapter introduces JavaScript objects, a simple and efficient way to collect vari-
ables together so that you can pass them around as a group rather than individually.

3.1 A need for organization
Your library of adventure stories is growing, and you decide to write a program to keep
track of your precious collection. The following listing shows variables you use to gen-
erate this test output on the console:

> The Hobbit by J. R. R. Tolkien

var bookTitle;
var bookAuthor;

bookTitle = "The Hobbit";
bookAuthor = "J. R. R. Tolkien";

console.log(bookTitle + " by " + bookAuthor);

First, you declare two variables, bookTitle and bookAuthor, using the var keyword.
You’re going to use those two names to store and access values in the program. You
then assign strings (text) to your freshly created variables. You wrap the strings in quo-
tation marks so JavaScript doesn’t try to interpret them as keywords or variable names.
Finally, you log a message to the console. You build the message by using the concate-
nation operator (the + symbol) to join three strings.

 It may be early days but you certainly have more than one book. How can you cope
with the variables needed as you buy more? You could have a different prefix for each
book. The next listing ups the number of books to three, printing these messages to
the console:

> There are three books so far ...
> The Hobbit by J. R. R. Tolkien
> Northern Lights by Philip Pullman
> The Adventures of Tom Sawyer by Mark Twain

var book1Title = "The Hobbit";
var book1Author = "J. R. R. Tolkien";

var book2Title = "Northern Lights";
var book2Author = "Philip Pullman";

var book3Title = "The Adventures of Tom Sawyer";
var book3Author = "Mark Twain";

Listing 3.1 Using variables to represent a book
(http://jsbin.com/fucuxah/edit?js,console)

Listing 3.2 Using prefixes to tell book variables apart
(http://jsbin.com/qowagi/edit?js,console)

Declare the variables you’ll
use in the program

Assign values to
the variables

Use the variables to display
information about the book

Declare variables and assign
them values in one step

http://jsbin.com/fucuxah/edit?js,console
http://jsbin.com/qowagi/edit?js,console

29Creating objects
console.log("There are three books so far...");
console.log(book1Title + " by " + book1Author);
console.log(book2Title + " by " + book2Author);
console.log(book3Title + " by " + book3Author);

This works up to a point. But as the number of books and the number of facts about
each book increase, the number of variables is harder to manage. It would be help-
ful to be able to group all of the information about a book together, using a single
variable.

3.2 Creating objects
In the same way as it is easier to ask for a first-aid kit rather than for the scissors, anti-
septic, bandages, and sticking plasters separately, it can be easier to ask for book1
rather than book1Title, book1Author, book1ISBN, and so on separately. JavaScript
provides us with the ability to create objects to group variables. Very specific notation,
or syntax, is used to define a new object. Let’s look at a full example and then break it
down into stages.

 Listing 3.3 shows how to create a book as an object rather than as separate vari-
ables. Figure 3.1 shows the output on JS Bin when you log the book object to the
console.

var book;

book = {
 title : "The Hobbit",
 author : "J. R. R. Tolkien",
 published : 1937
};

console.log(book);

Listing 3.3 A book as an object
(http://jsbin.com/ruruko/edit?js,console)

Figure 3.1 You log an object to the console on JS Bin.

http://jsbin.com/ruruko/edit?js,console

30 CHAPTER 3 Objects: grouping your data
When you run listing 3.3 on JS Bin, the console displays all the properties of your new
book object, as well as telling you it’s an object. Notice that it displays the properties in
alphabetical order. The object itself doesn’t order the properties; JS Bin has chosen an
ordering purely for display.

 Let’s break down the object creation to get a clearer idea of what’s going on and
what all the different bits of notation represent.

3.2.1 Creating an empty object

In chapter 2 you saw that variables can be declared but not assigned a value until later
in a program. You might have to wait for some user input or a response from a server
or a reading from a sensor before you know the value you want to assign to the vari-
able. In the same way, you can create an object with no properties, knowing that prop-
erties will be added at some point in the future.

 To create an object, use curly braces, as in the following listing.

var book;

book = {};

You create an empty object, one with no properties, and assign it to the variable book.
It’s not much use without any properties, and you’ll see how to add new properties to
an existing object in section 3.4. But how would you create your book object with
properties in place?

3.2.2 Properties as key-value pairs

The book in listing 3.3 includes three properties: its title, its author, and its year of
publication. The values of those properties are "The Hobbit", "J. R. R. Tolkien",
and 1937. In a JavaScript object, the names of the properties are called keys. For book
the keys are title, author, and published. When creating an object, you add a prop-
erty by including its key and value, separated by a colon, between the curly braces. Fig-
ure 3.2 shows a property definition.

Listing 3.4 Creating an empty object
(http://jsbin.com/kaqatu/edit?js,console)

Declare a variable by
using the var keyword

Create an object by using curly
braces; assign it to the variable

title : "The Hobbit"

ValueKey

Colons separate keys from values Figure 3.2 Set properties by using key-value pairs.

http://jsbin.com/kaqatu/edit?js,console

31Creating objects
Another name for a key-value pair is a name-value pair, but we’ll stick with keys and
values in this book.

 In the next listing you create an object with a single property.

var book;

book = {
 title : "The Hobbit"
};

You declare a variable and then create an object and assign it to the variable. The
object has a single property. The key of the property is title and its value is "The
Hobbit". We usually simply say that the title property of book is "The Hobbit".

 Property values aren’t restricted to number and string literals, like 50 or "The
Hobbit". You can also use previously declared variables as values. The following listing
assigns the name of a book to a variable and then uses that variable as the value of an
object’s property.

var book;
var bookName;

bookName = "The Adventures of Tom Sawyer";

book = {
 title : bookName
};

Having an object with a single property is a little extravagant; you might as well stick
with a variable. Let’s see how to create an object with more than one property.

 When you need multiple properties, commas separate the key-value pairs. Figure 3.3
shows two properties as part of an object definition, and listing 3.7 creates two objects,
each with two properties.

Listing 3.5 An object with a single property
(http://jsbin.com/robupi/edit?js,console)

Listing 3.6 Using a variable as a property value
(http://jsbin.com/bafige/edit?js,console)

Assign the name of
the book to a variable

Use the variable as the
value of the title property

{

 title : "The Hobbit",

 author : "J. R. R. Tolkien"

}

Properties are key-value pairs

Start of object
definition

End of object
definition

Commas separate
properties

Figure 3.3 An object definition with two properties

http://jsbin.com/robupi/edit?js,console
http://jsbin.com/bafige/edit?js,console

32 CHAPTER 3 Objects: grouping your data
var book1;
var book2;

book1 = {
 title : "The Hobbit",
 author : "J. R. R. Tolkien"
};

book2 = {
 title : "Northern Lights",
 author : "Philip Pullman"
};

Now that you’ve created an object, you need to be able to access its properties.

3.3 Accessing object properties
We’re comfortable with the concept of a first-aid kit as a sin-
gle object we can pass around from person to person and
take from place to place. It’s only when we need to use the
kit that we consider what’s inside: antiseptic, scissors, ban-
dages, and so on.

 For JavaScript objects, to access the values of an object’s
properties you can use dot notation. Join the name of the
variable to the name of the property, its key, with a period or
dot. For a first-aid kit as an object you might use kit.anti-
septic or kit.scissors or kit.bandages. And for books,
to access the author property of the object assigned to the
variable called book, you write book.author (figure 3.4).

 In the next listing, you print the title and author properties of the book object to
the console to give the following output:

> The Hobbit
> J. R. R. Tolkien

var book;

book = {
 title : "The Hobbit",
 author : "J. R. R. Tolkien",
 published : 1937
};

console.log(book.title);
console.log(book.author);

Listing 3.7 Objects with multiple properties
(http://jsbin.com/bawiqev/edit?js,console)

Listing 3.8 Using dot notation to access property values
(http://jsbin.com/funiyu/edit?js,console)

Separate the properties
with a comma

Use key-value pairs to
set each property

book.author

Variable name Key

Dot operator

Figure 3.4 Accessing
object properties using dot
notation

Set properties using
key-value pairs

Access property values
using dot notation

http://jsbin.com/bawiqev/edit?js,console
http://jsbin.com/funiyu/edit?js,console

33Updating object properties
You line up the colons in the object properties in listing 3.8 to aid readability. Although
JavaScript will ignore the extra spaces, indenting blocks of code and lining up values
can make your programs easier to read and follow, especially as they grow in size. And
the easier your code is to read, the easier it is to maintain and update, both for you
and for other programmers.

 Replacing a bunch of separate variables with a single object helps you manage the
complexity of your programs. You can think more clearly about how programs work
when details are hidden until you need them. You consider a book a single entity in
your program until you need to access the book’s title or author or publication date. It
may seem that replacing three variables with one variable and three properties isn’t an
improvement, but when you start to use objects with functions in chapter 7 and arrays
in chapter 8, their economy and clarity will be more obvious.

 You use property values just like variables. The code in the following listing concate-
nates each book’s title with the string " by " and its author to give this output:

> The Hobbit by J. R. R. Tolkien
> Northern Lights by Philip Pullman

var book1;
var book2;

book1 = {
 title: "The Hobbit",
 author: "J. R. R. Tolkien"
};

book2 = {
 title: "Northern Lights",
 author: "Philip Pullman"
};

console.log(book1.title + " by " + book1.author);
console.log(book2.title + " by " + book2.author);

3.4 Updating object properties
In a quiz app, players attempt questions one after another. The number of questions
attempted, number of questions correct, and score will change over time. You can cre-
ate a player object with initial values set and then update them whenever a question is
attempted. Use dot notation to change a property that already exists or to add a new
property to an object, as in the following listing.

Listing 3.9 Concatenating string properties
(http://jsbin.com/yoweti/edit?js,console)

http://jsbin.com/yoweti/edit?js,console

34 CHAPTER 3 Objects: grouping your data
var player1;

player1 = {
 name: "Max",
 attempted: 0,
 correct: 0,
};

player1.attempted = 1;
player1.correct = 1;
player1.score = 50;

Your code in listing 3.10 sets the attempted and correct properties to an initial value
when the object is created but then updates them to a new value. It uses the assign-
ment operator, =, to assign the value, 1, on the right of the operator, to the property,
player1.attempted, on its left. You set the attempted and correct properties and
then immediately update them; in the actual quiz app, the change would be in response
to the player answering a question.

 You can add new properties to an object after creating it. In listing 3.10, you assign
the value 50 to the score property of the player1 object.

player1.score = 50;

You didn’t set the score property when creating the object; assigning a value automat-
ically creates the property if it does not yet exist.

 Just like using variables, you can use properties in a calculation and assign the
result back to the property. The next listing shows code updating a player’s properties:

> Max has scored 0
> Max has scored 50

var player1;

player1 = {
 name: "Max",
 score: 0
};

console.log(player1.name + " has scored " + player1.score);

player1.score = player1.score + 50;

console.log(player1.name + " has scored " + player1.score);

Listing 3.10 Using dot notation to update a property
(http://jsbin.com/mulimi/edit?js,console)

Listing 3.11 Using a property in a calculation
(http://jsbin.com/cuboko/edit?js,console)

Set initial properties when
creating the object

Update the property
using dot notation

Add a new property
and assign it a value

Evaluate the
expression on the
right and assign
the result to the
property

http://jsbin.com/mulimi/edit?js,console
http://jsbin.com/cuboko/edit?js,console

35Further examples
When you update the score property (in bold in the listing), JavaScript evaluates the
right side of the assignment first. Because player1.score is 0, the expression becomes 0
+ 50, which is 50. JavaScript then assigns that value to the left side, that is, back to the
score property. So, you update player1.score from 0 to 50.

3.5 Further examples
Although developing The Crypt program gives you an ongoing context for introducing
and discussing new concepts, a broader range of examples will help to deepen your
understanding of the different ideas presented. You can also revisit some of these
examples throughout the book to apply fresh techniques as you master them.

 The examples all use curly braces to create an object and then assign the object to
a variable created with the var keyword, in a single step.

3.5.1 Writing a blog

A blog is made up of blog posts. It would be good to have more information about
each author, to be able to tag posts with keywords, and to add comments to each post.
For now, here’s a minimal object to represent a single post.

var post = {
 id : 1,
 title : "My Crazy Space Adventure",
 author : "Philae",
 created : "2015-06-21",
 body : "You will not believe where I just woke up!! Only on a comet..."
};

3.5.2 Creating a calendar

Calendar events clearly involve dates. JavaScript does have a Date object, but you
won’t be using it in the book. The next listing represents dates as strings in a spe-
cific format.

var event = {
 title : "Appraisal Meeting",
 startDate : "2016-10-04 16:00:00",
 endDate : "2016-10-04 17:00:00",
 location : "Martha's office",
 importance: 1,
 notes : 'Don\'t forget the portfolio!'
};

Listing 3.12 A blog post
(http://jsbin.com/jiculu/edit?js,console)

Listing 3.13 A calendar event
(http://jsbin.com/viroho/edit?js,console)

Include an apostrophe in
the string when the string is
delimited by double quotes

Use an escaped apostrophe
when the string is delimited
by single quotes

http://jsbin.com/jiculu/edit?js,console
http://jsbin.com/viroho/edit?js,console

36 CHAPTER 3 Objects: grouping your data
Notice how to cope with the apostrophe in the notes property. A backslash character
before the apostrophe stops JavaScript from seeing it as the end of the string. The
backslash is called an escape character and won’t be shown.

event.notes = 'Don\'t forget the portfolio!';

Use the escape character to display double quotes when a string is already wrapped in
double quotes.

var story = "She looked at me. \"What did you say?\" she asked.";

JavaScript also uses the backslash escape character to specify special characters like
tabs and new lines. You’ll see it in action throughout the book.

 A calendar contains lots of event objects. In chapter 9, you’ll see how to streamline
the process of creating objects that all have a similar structure when you investigate
constructor functions.

3.5.3 What’s the weather like?

Online weather information services provide weather data you can use in your pro-
grams. The data is often formatted using JSON (JavaScript Object Notation—see
chapter 20) that’s very similar to the objects you’ve been learning about in this chap-
ter. The data can be quite detailed with many properties. The next listing shows a cut-
down version of location data supplied by one of these services.

var location = {
 "city" : "San Francisco",
 "state" : "CA",
 "country" : "US",
 "zip" : "94101",
 "latitude" : 37.775,
 "longitude" : -122.418,
 "elevation" : 47.000
};

The property keys are within double quotation marks. JavaScript is happy for you to
wrap keys, the property names, in quotation marks, single or double, although you
haven’t been doing that in the examples so far. In fact, quotation marks are
required if the property name doesn’t satisfy the rules for valid variable names dis-
cussed in chapter 2. You’ll take a more detailed look at working with such property
names in chapter 10. The JSON specification, which sets out how programs should
transmit JavaScript object data as text across the internet, requires all keys to be in
double quotation marks. Because it’s sometimes required, many programmers rec-
ommend that property names always be placed within quotation marks to avoid
inconsistency and potential errors.

Listing 3.14 Location for a weather app
(http://jsbin.com/diguhe/edit?js,console)

http://jsbin.com/diguhe/edit?js,console

37The Crypt—a player object
 This example also lines up the colons in the key-value pairs. Do you think that
helps? Compare it to the other examples in this section. Are they easy to read and fol-
low? You don’t have to rigidly stick to one style or the other, although it’s quite com-
mon for programmers to adopt particular stylistic habits over time.

3.5.4 The testing effect

A great way to learn is to test yourself often. A quiz app could represent its questions
and answers as properties of objects like the one in the next listing.

var questionAndAnswer = {
 question: "What is the capital of France?",
 answer1: "Bordeaux",
 answer2: "F",
 answer3: "Paris",
 answer4: "Brussels",
 correctAnswer: "Paris",
 marksForQuestion: 2
};

A quiz app is likely to include a small set of question types. Listing 3.15 is an example
of a multiple-choice question type. Each type of question would have a fixed form of
presentation. Templates are a great way of presenting copies of similarly structured
data, and we’ll look at them in more detail in chapter 19.

3.5.5 Create your own

Think of some programs you’d like to create. What kinds of objects could you
design to represent entities in the program? Head to JS Bin and have a go at build-
ing objects and displaying properties on the console. Maybe share your creations or
ask any questions they inspire over on the Get Programming with JavaScript forum at
https://forums.manning.com/forums/get-programming-with-javascript.

3.6 The Crypt—a player object
You’ll now apply your knowledge of JavaScript objects to The Crypt. Figure 3.5 shows
where the focus of this section, a player object, fits into the overall structure of our
ongoing game example.

 In chapter 2, you considered the kind of information you need to store for players
in The Crypt. For a single player, you start off with variables like these:

playerName = "Kandra";
playerHealth = 50;
playerPlace = "The Dungeon of Doom";
playerItems = "a rusty key, The Sword of Destiny, a piece of cheese";

Listing 3.15 A question and answer for a quiz app
(http://jsbin.com/damoto/edit?js,console)

http://jsbin.com/damoto/edit?js,console
https://forums.manning.com/forums/get-programming-with-javascript

38 CHAPTER 3 Objects: grouping your data
You then need to replicate those variables for each player in the game, maybe by using
variable prefixes like player1Name, player2Name, and so on.

 Clearly, it’s much neater to use JavaScript objects as a way of grouping all of the infor-
mation about a single player. Listing 3.16 shows how you can represent a player as an
object and display some of their properties on the console. The output is as follows:

> Kandra
> Kandra is in The Dungeon of Doom
> Kandra has health 50
> Items: a rusty key, The Sword of Destiny, a piece of cheese

var player;

player = {
 name: "Kandra",
 health: 50,
 place: "The Dungeon of Doom",
 items: "a rusty key, The Sword of Destiny, a piece of cheese"
};

console.log(player.name);
console.log(player.name + " is in " + player.place);
console.log(player.name + " has health " + player.health);
console.log("Items: " + player.items);

The last four lines of the listing are just for displaying player information. Having to
repeat those lines of code every time you want to display a player’s information seems
a little tedious. It would be great to be able to write the lines of code once and then
call them up on demand.

 You’re in luck! JavaScript lets you define functions to execute blocks of code when-
ever you need them. Functions are very powerful and will help streamline the display

Listing 3.16 A player object
(http://jsbin.com/qelene/edit?js,console)

player variables

Players

a player object

showing player info

player items

Player Constructor

Places Maps

place objects

place items

place exits

Place Constructor

showing place info

linking places via exits

Game

render

get

go

Figure 3.5 Elements in The Crypt

http://jsbin.com/qelene/edit?js,console

39Summary
of player properties and the creation of multiple player objects. You’ll take a really
detailed look at functions over the next four chapters.

3.7 Summary
■ Group related variables as properties of an object.
■ Define objects as collections of comma-separated properties between curly braces:

var player = { name : "Hadfield", location : "The ISS" };

■ For each property use a key-value pair, with key and value separated by a colon:

name : "Hadfield"

■ Access property values by using dot notation. If the object is assigned to a vari-
able, join the property name to the variable name with a dot:

player.name

■ Use properties in expressions just as you would variables:

console.log(player.name + " is in " + player.location);

■ Assign values to properties using the assignment operator, =:

player.location = "On a space walk";

■ Add new properties to existing objects whenever you want:

player.oxygen = 96;

Functions:
code on demand
One of the main themes of Get Programming with JavaScript is managing complexity
through good organization. In chapter 2, you stored information in variables and
saw how choosing good names for those variables helps you understand their pur-
pose in a program. In chapter 3, you grouped variables as properties of objects. You
can focus on objects as a whole or drill down into the details when needed. In this
chapter you take a look at another important method for organizing code and
avoiding repetition, the function.

4.1 Noticing repetition
As the programs you write become longer and more complex, you find yourself
repeating similar sections of code with only slight differences. Common tasks, like

This chapter covers
■ Organizing instructions with functions
■ Defining a function—specifying code to be

executed on demand
■ Calling a function—executing code on demand
■ Reducing repetition in code
■ Making programs easier to read and update
40

41Noticing repetition
displaying text, animating an image, or saving to a database, may need to be performed
often. You need to notice these recurring bits of code; they’re prime function fodder.

 A function is a way of writing code once but using it many times. Section 4.2 looks at
how to create functions. This section explores a couple of examples of JavaScript
repeated.

4.1.1 Displaying object properties as text

Programs use objects and variables to store all kinds of information—profiles, posts,
documents, and photos—you name it and someone has stored it on a computer some-
where. A common task is to display that information to the user. Say you have some
objects representing movies and need to display the information about each movie on
the console. The kind of output expected is shown in figure 4.1.

As you can see in the following listing, the code required to create the output in fig-
ure 4.1 includes five calls to console.log. And that’s just for one movie.

var movie1;

movie1 = {
 title: "Inside Out",
 actors: "Amy Poehler, Bill Hader",
 directors: "Pete Doctor, Ronaldo Del Carmen"
};

console.log("Movie information for " + movie1.title);
console.log("------------------------------");
console.log("Actors: " + movie1.actors);
console.log("Directors: " + movie1.directors);
console.log("------------------------------");

Listing 4.1 Displaying an object’s properties on the console
(http://jsbin.com/besudi/edit?js, console)

Figure 4.1 Movie information shown on the console in JS Bin

Create
a movie
object

Use five calls to
console.log to display
the values of various
movie properties

http://jsbin.com/besudi/edit?js,console

42 CHAPTER 4 Functions: code on demand
If you have to write those five lines of code every time you want to display movie infor-
mation and for every movie, that’s going to get pretty repetitive. And if you then
decide to change the information displayed, you’ll have to go through all the places
where it appears in the code and make sure it’s changed consistently.

 The next listing shows the code repeated for three different movies.

console.log("Movie information for " + movie1.title);
console.log("------------------------------");
console.log("Actors: " + movie1.actors);
console.log("Directors: " + movie1.directors);
console.log("------------------------------");

console.log("Movie information for " + movie2.title);
console.log("------------------------------");
console.log("Actors: " + movie2.actors);
console.log("Directors: " + movie2.directors);
console.log("------------------------------");

console.log("Movie information for " + movie3.title);
console.log("------------------------------");
console.log("Actors: " + movie3.actors);
console.log("Directors: " + movie3.directors);
console.log("------------------------------");

There could be many more than three movies and a number of places where the
information needs to be displayed. If you later need to change the word information to
info, you’ll have to make sure you find all the places it’s used.

 The three blocks of five statements are almost identical. All that varies is which
movie’s properties are being displayed. It would be great to be able to define one
block of statements and ask JavaScript to use that block whenever needed. That’s what
functions are for!

 The next section has one more example of repetitive code. (Don’t worry, we’ll get
to functions before the examples get too repetitive!)

4.1.2 Adding tax and displaying a summary

A simple task like adding tax to a price is the kind of thing that happens again and
again. You calculate the tax and add it to the price to give a total cost.

> price = $140
> tax @ 15% = $21
> total cost = $161

The following listing shows a program to add tax for three different transactions. The
two operators, * and /, perform multiplication and division, respectively.

Listing 4.2 Displaying information from similar objects
(http://jsbin.com/gewegi/edit?js,console)

http://jsbin.com/gewegi/edit?js,console

43Defining and calling functions
var sale1;
var sale2;
var sale3;

sale1 = { price: 140, taxRate: 15 };
sale2 = { price: 40, taxRate: 10 };
sale3 = { price: 120, taxRate: 20 };

sale1.tax = sale1.price * sale1.taxRate / 100;
sale2.tax = sale2.price * sale2.taxRate / 100;
sale3.tax = sale3.price * sale3.taxRate / 100;

sale1.total = sale1.price + sale1.tax;
sale2.total = sale2.price + sale2.tax;
sale3.total = sale3.price + sale3.tax;

console.log("price = $" + sale1.price);
console.log("tax @ " + sale1.taxRate + "% = $" + sale1.tax);
console.log("total cost = $" + sale1.total);

console.log("price = $" + sale2.price);
console.log("tax @ " + sale2.taxRate + "% = $" + sale2.tax);
console.log("total cost = $" + sale2.total);

console.log("price = $" + sale3.price);
console.log("tax @ " + sale3.taxRate + "% = $" + sale3.tax);
console.log("total cost = $" + sale3.total);

Wow! That’s a riot of repetition. As well as the blocks of console.log lines, you repeat
the structure of the calculations. It’s essentially the same code every time you want to
perform the calculation. Rest assured, you’ll learn a much better way to write this pro-
gram. Enter the function!

4.2 Defining and calling functions
Just as an object is a collection of properties, a function is a collection of statements or
instructions. Functions help you avoid repetition and make your code more organized
and easier to update and maintain. Well-named functions should also make your pro-
grams easier to follow. If you find your functions are used a lot in a program and
would be useful in other programs too, you can create libraries of helpful functions to
include in other projects.

 In the previous section you saw two examples of programs where blocks of code
with the same structure were repeated. To reduce the code bloat you want to replace
those blocks with something like the following:

showMovieInfo();
showCostBreakdown();

Listing 4.3 Adding tax to find the total cost
(http://jsbin.com/kawocu/edit?js,console)

All three calculations have
the same structure, using *
and / to multiply and divide.

Again, all three calculations
have the same structure.

http://jsbin.com/gewegi/edit?js,console

44 CHAPTER 4 Functions: code on demand
The two functions, showMovieInfo and showCostBreakdown, should produce the
same output as the code blocks in listings 4.2 and 4.3, and you should be able to use
them again and again, whenever you want. Let’s see how such code-on-demand magic
is conjured.

4.2.1 Defining new functions

Define a function by using the following pieces, as shown in figure 4.2:

■ The function keyword
■ Parentheses, ()
■ A code block between curly braces, {}

The code block contains the list of instructions you’d like to execute whenever you
use the function. The list of instructions is also called the function body.

 It’s common to see function definitions set out like this:

function () {
 // Lines of code to be executed go here
}

Once you’ve defined a function, you can assign it to a variable, just like any value. The
next listing defines a function to display “Hello World!” on the console and assigns the
function to the variable sayHello.

var sayHello;

sayHello = function () {
 console.log("Hello World!");
};

Listing 4.4 A simple function definition and assignment
(http://jsbin.com/tehixo/edit?js,console)

function () {

}

function keyword

Parentheses

Code block between curly braces
for the function body

Figure 4.2 The pieces of a function definition

Declare a variable

Define a function and assign
it to the sayHello variable

Include code between the curly
braces, to be executed whenever
you run the function

http://jsbin.com/tehixo/edit?js,console

45Defining and calling functions
It’s easy to see the different pieces that make up the function definition in listing 4.4:
the function keyword, the empty parentheses, and the code block for the function
body. The function body has only a single statement, console.log("Hello World!");.
At this point, you have only defined the function, ready for use later. The code in the
function body won’t be executed until you run the function—you’ll see how to do that
in section 4.2.3.

 The following listing shows a couple more examples of defining functions and
then assigning them to variables.

var findTotal;
var displayMenu;

findTotal = function () {
 result = number1 + number2;
};

displayMenu = function () {
 console.log("Please choose an option:");
 console.log("(1) Print log");
 console.log("(2) Upload file");
 console.log("(9) Quit");
};

4.2.2 Function expressions and function declarations

In the previous examples you’ve been using function expressions to define functions and
assign them to variables with the assignment operator.

var findTotal = function () { … }; // The function expression is in bold.

You can also use an alternative syntax, called a function declaration. Rather than defin-
ing the function and then assigning it to a variable, you can declare a name for the
function as part of the definition.

function findTotal () { … } // Declare a name with the function

You can treat the two ways of defining functions as equivalent; there are some subtle
differences but we won’t go into them here. Get Programming with JavaScript uses func-
tion expressions throughout parts 1 and 2 to highlight the similarities between creat-
ing and assigning different values, including objects, functions, and arrays.

var numOfDays = 7; // Assign a number
var player = { … }; // Create and assign an object
var findTotal = function () { … }; // Define and assign a function
var items = []; // Create and assign an array (ch8)

Listing 4.5 Two more function definitions and assignments
(http://jsbin.com/xezani/edit?js,console)

The variables result,
number1 and number2,
would have to have been
declared elsewhere.

http://jsbin.com/xezani/edit?js,consol

46 CHAPTER 4 Functions: code on demand
Don’t worry about the function declaration syntax for now or even about the differ-
ence between declarations and expressions. You’ll be much more comfortable with
functions when you meet the declaration syntax again in part 3.

 Just defining the functions isn’t enough to make “Hello World!” appear on the
console, calculate the total, or display the menu. You need a way to tell the function to
execute its list of instructions.

4.2.3 Using functions

Once you’ve assigned a function to a variable, whenever you want to execute the state-
ments in the function body, you write the variable name followed by parentheses, ().

sayHello();
findTotal();
displayMenu();

Other names for running the function are calling the function or invoking the function.
 In listing 4.6, you call the sayHello function three times. It displays the string

"Hello World!" three times, like this:

> Hello World!
> Hello World!
> Hello World!

var sayHello;

sayHello = function () {
 console.log("Hello World!");
};

sayHello();
sayHello();
sayHello();

The next listing uses the findTotal function to update the result variable. It then
displays the whole calculation on the console:

> 1000 + 66 = 1066

var number1 = 1000;
var number2 = 66;
var result;
var findTotal;

Listing 4.6 Calling the sayHello function three times
(http://jsbin.com/vozuxa/edit?js,console)

Listing 4.7 Using the findTotal function to display a calculation
(http://jsbin.com/hefuwa/edit?js,console)

Define the function and
assign it to a variable

Call the function by
adding parentheses
after the variable name

Call the function
again and again

http://jsbin.com/vozuxa/edit?js,console
http://jsbin.com/hefuwa/edit?js,console

47Defining and calling functions
findTotal = function () {
 result = number1 + number2;
};

findTotal();

console.log(number1 + " + " + number2 + " = " + result);

Listing 4.8 calls the displayMenu function to, well, display a menu. (These functions
do exactly what they say on the tin!)

> Please choose an option:
> (1) Print log
> (2) Upload file
> (9) Quit

var displayMenu;

displayMenu = function () {
 console.log("Please choose an option:");
 console.log("(1) Print log");
 console.log("(2) Upload file");
 console.log("(9) Quit");
};

displayMenu();

It may seem strange to use empty parentheses as the notation for calling a function.
But, as you’ll see in chapter 5, they’re not always empty … [cue mysterious music].

DEFINITION For those who like their terminology, the parentheses, (), added
to the end of a variable when calling a function are called the function invoca-
tion operator or the function call operator.

4.2.4 Functions step by step

Table 4.1 summarizes the steps used to define and call a function.

Listing 4.8 Displaying a menu
(http://jsbin.com/cujozo/edit?js,console)

Table 4.1 Steps used to define and call a function

Action Code Comments

Declare a variable var sayHello; Sets aside the name for your
use in the program.

Define a function function () {
 console.log("Hello World!");
}

The code in the function body
is not executed at this point.

http://jsbin.com/cujozo/edit?js,console

48 CHAPTER 4 Functions: code on demand
The second row in the table, Define a function, doesn’t usually occur on its own;
you’re much more likely to define a function and assign it to a variable, as seen on the
third row, Assign to a variable. (You’ll see in later chapters that you can assign function
definitions as elements in arrays [lists] and pass them to and from other functions—
they’re not always assigned to variables.)

4.3 Reducing repetition
In listings 4.2 and 4.3 you saw the repeated blocks of code needed when you didn’t
have functions at your disposal. It’s time to rein in those runaways, cut back those fast-
growing weeds, put the kids on a diet, cap the spending—you get the picture; let’s
reduce the repetition!

4.3.1 A function for displaying object properties as text

Returning to the code from listing 4.2, you streamline the display of movie informa-
tion. Write the movie display code once, in a function, and simply call the function
whenever it’s needed.

var showMovieInfo;

showMovieInfo = function () {
 console.log("Movie information for " + movie.title);
 console.log("------------------------------");
 console.log("Actors: " + movie.actors);
 console.log("Directors: " + movie.directors);
 console.log("------------------------------");
};

The code assigns the new function to the showMovieInfo variable. Call the function by
writing the variable name followed by parentheses, showMovieInfo(), as shown in the

Assign to a variable sayHello = function () {
 console.log("Hello World!");
};

Assigning the function to a
variable gives you a label you
can use to call the function.

Call the function sayHello(); The code in the function body
is executed.

Call the function again
and again as needed

sayHello();
sayHello();
sayHello();

The code in the function body
is executed every time the
function is called.

Listing 4.9 Using a function to display object properties
(http://jsbin.com/toqopo/edit?js,console)

Table 4.1 Steps used to define and call a function (continued)

Action Code Comments

http://jsbin.com/toqopo/edit?js,console

49Reducing repetition
next listing. You should end up with the following output on the console, matching
the aim seen way back in figure 4.1.

> Movie information for Inside Out
> ------------------------------
> Actors: Amy Poehler, Bill Hader
> Directors: Pete Doctor, Ronaldo Del Carmen
> ------------------------------

var movie1;
var showPlayerInfo;
var movie;

movie1 = {
 title: "Inside Out",
 actors: "Amy Poehler, Bill Hader",
 directors: "Pete Doctor, Ronaldo Del Carmen"
};

showMovieInfo = function () {
 console.log("Movie information for " + movie.title);
 console.log("------------------------------");
 console.log("Actors: " + movie.actors);
 console.log("Directors: " + movie.directors);
 console.log("------------------------------");
};

movie = movie1;

showMovieInfo();

With the movie variable, used by the showMovieInfo function, you can switch which
movie’s information the function will use. Listing 4.11 shows how to switch between
movies. Information for three different movies is printed to the console.

> Movie information for Inside Out
> ------------------------------
> Actors: Amy Poehler, Bill Hader
> Directors: Pete Doctor, Ronaldo Del Carmen
> ------------------------------
> Movie information for Spectre
> ------------------------------
> Actors: Daniel Craig, Christoph Waltz
> Directors: Sam Mendes
> ------------------------------
> Movie information for Star Wars: Episode VII – The Force Awakens
> ------------------------------
> Actors: Harrison Ford, Mark Hamill, Carrie Fisher
> Directors: J.J.Abrams
> ------------------------------

Listing 4.10 Calling the showMovieInfo function
(http://jsbin.com/menebu/edit?js,console)

Define the function.
The code in the
function body is not
executed at this point.

Call the function. Now
the code is executed.

http://jsbin.com/menebu/edit?js,console

50 CHAPTER 4 Functions: code on demand
var movie1;
var movie2;
var movie3;
var movie;
var showMovieInfo;

movie1 = {
 title: "Inside Out",
 actors: "Amy Poehler, Bill Hader",
 directors: "Pete Doctor, Ronaldo Del Carmen"
};

movie2 = {
 title: "Spectre",
 actors: "Daniel Craig, Christoph Waltz",
 directors: "Sam Mendes"
};

movie3 = {
 title: "Star Wars: Episode VII - The Force Awakens",
 actors: "Harrison Ford, Mark Hamill, Carrie Fisher",
 directors: "J.J.Abrams"
};

showMovieInfo = function () {
 console.log("Movie information for " + movie.title);
 console.log("------------------------------");
 console.log("Actors: " + movie.actors);
 console.log("Directors: " + movie.directors);
 console.log("------------------------------");
};

movie = movie1;
showMovieInfo();

movie = movie2;
showMovieInfo();

movie = movie3;
showMovieInfo();

4.3.2 Functions for adding tax and displaying a summary

Listing 4.12 shows a function to add tax for sales and display a summary of each transac-
tion. Most of the code that you need to repeat is in the two functions, calculateTax and
displaySale. You call them for each sale object in turn. The output is shown here.

price = $140
tax @ 15% = $21
total cost = $161
price = $40
tax @ 10% = $4

Listing 4.11 Using the same function with multiple objects
(http://jsbin.com/mavutu/edit?js,console)

Declare a movie variable
to hold the current
movie for display

The movie variable
is used in the
showMovieInfo
function.

Assign movie1 to the movie
variable, ready for display

Switch the movie
to be displayed

http://jsbin.com/mavutu/edit?js,console

51Reducing repetition
total cost = $44
price = $120
tax @ 20% = $24
total cost = $144

As with all of the listings on JS Bin, there are “Further Adventures” below the program
that suggest ways of exploring the code and building your understanding. In this case,
one challenge is to reduce the repetition of the function calls; calculateTax and
displaySale are always called together. Although it’s good to have two different func-
tions—they do different jobs—can you avoid having to call them both for each sale
object? If you’re connected, click the link above listing 4.12 to head to JS Bin now and
embrace the adventure. If you’re reading a print copy of the book, away from technol-
ogy, it’s paper and pencil for you! Solutions to most problems are on the Get Programming
with JavaScript website at www.room51.co.uk/books/getProgramming/listings.html.

var sale1;
var sale2;
var sale3;
var sale;
var calculateTax;
var displaySale;

sale1 = { price: 140, taxRate: 15 };
sale2 = { price: 40, taxRate: 10 };
sale3 = { price: 120, taxRate: 20 };

calculateTax = function () {
 sale.tax = sale.price * sale.taxRate / 100;
 sale.total = sale.price + sale.tax;
};

var displaySale = function () {
 console.log("price = $" + sale.price);
 console.log("tax @ " + sale.taxRate + "% = $" + sale.tax);
 console.log("total cost = $" + sale.total);
};

sale = sale1;
calculateTax();
displaySale();

sale = sale2;
calculateTax();
displaySale();

sale = sale3;
calculateTax();
displaySale();

The two functions use the sale variable in their definitions, accessing properties on
the object, sale.price, sale.taxRate, and so on. The code in the function bodies

Listing 4.12 Using functions to add and display tax
(http://jsbin.com/raqiri/edit?js,console)

Declare a sale
variable to be used
by the functions

Use the sale variable
here and in the
displaySale function

Assign sale1 to sale before
calling the two functions to
update and display it

http://jsbin.com/raqiri/edit?js,console
http://www.room51.co.uk/books/getProgramming/listings.html

52 CHAPTER 4 Functions: code on demand
won’t run until the program calls the two functions, by which time the program will
have assigned one of the sale objects to the sale variable.

 The function names calculateTax and displaySale help to make the program in
listing 4.12 easier to follow and understand. Section 4.4 investigates these ideas in
more detail.

4.4 Making code easier to read and update
As your programs get longer and more complicated, you manage that complexity by
breaking them into well-named objects and functions. Anyone reading your code can
follow its flow and understand the purpose of the pieces and of the whole.

 Take a look at the following code snippet; you should get a sense of what’s happen-
ing even if you don’t know the details of how the functions work.

...
var balance = getAccountBalance();

displayBalance();

addInterest()
addBonus();
setAccountBalance();

displayBalance();
...

Each function should have a single, clear purpose. If you need to investigate what a
function does, you should be able to find it defined in one place. Let’s look at an
example of updating a function.

4.4.1 Updating the showMovieInfo function

In listing 4.11, you created a showMovieInfo function to display information about a
movie object. It was great to be able to encapsulate the blocks of display code into a sin-
gle function. But having the information for multiple movies squashed together on
the console makes it hard to pick out individual facts about particular movies. It would
be useful to add blank lines, making it easier to see each movie.

> Movie information for Inside Out
> ------------------------------
> Actors: Amy Poehler, Bill Hader
> Directors: Pete Doctor, Ronaldo Del Carmen
> ------------------------------
>
> Movie information for Spectre
> ------------------------------
> Actors: Daniel Craig, Christoph Waltz
> Directors: Sam Mendes
> ------------------------------
>
> Movie information for Star Wars: Episode VII – The Force Awakens
> ------------------------------
> Actors: Harrison Ford, Mark Hamill, Carrie Fisher

53Making code easier to read and update
> Directors: J.J.Abrams
> ------------------------------
>

Because you have all of the display code inside your showMovieInfo function, you can
head right there and add an extra call to console.log to create the blank line, as
shown in the next listing. Your organization is already paying off!

showMovieInfo = function () {
 console.log("Movie information for " + movie.title);
 console.log("------------------------------");
 console.log("Actors: " + movie.actors);
 console.log("Directors: " + movie.directors);
 console.log("------------------------------");
 console.log("");
};

So close! Because the JS Bin console wraps strings in speech marks, you don’t quite
get your blank lines. You get empty quotation marks instead. But if you check the
browser’s own console (see the online guide at www.room51.co.uk/guides/browser-
consoles.html), you should see the blank lines expected, as shown in figure 4.3.

Listing 4.13 Updating your display function to add a blank line
(http://jsbin.com/cijini/edit?js,console)

Add an extra call to
console.log to give you
the blank line you want

Figure 4.3 JS Bin displays empty strings in quotation marks but the Safari browser doesn’t.

http://jsbin.com/cijini/edit?js,console
http://www.room51.co.uk/guides/browser-consoles.html
http://www.room51.co.uk/guides/browser-consoles.html

54 CHAPTER 4 Functions: code on demand
If this example were part of a larger (maybe much larger) program and you didn’t
have the player display logic safely nestled in a single function, you’d have to inspect
all the code to find the lines where changes should be made. Text editors and devel-
opment environments should have tools to help, but they’re not foolproof and your
program could end up with coy corners of uncorrected code. You try it out and, to
begin with, everything seems fine. Then later there’s running and, um, screaming.
Avoid the nightmare—use functions.

4.5 The Crypt—displaying player information
You’ll now apply your knowledge of JavaScript functions to The Crypt. Figure 4.4 shows
where the focus of this section, showing player information by using functions, fits
into the overall structure of our ongoing game example.

In chapter 3 you saw how to group information about a player into a single JavaScript
object. You create the object using curly braces and set the properties using key-value
pairs, like this:

var player;

player = {
 name: "Kandra",
 health: 50,
 place: "The Dungeon of Doom"
};

Once you assign the new object to the player variable, you can get the property values
by using dot notation. Displaying information about the player involves logging prop-
erties to the console.

console.log(player.name + " is in " + player.place);

player variables

Players

a player object

player items

Player Constructor

showing player info

Places

place objects

place items

showing place info

Place Constructor

place exits

using return values

using functions

using arguments

using objects

Maps

Game

linking places

render

get

go

Figure 4.4 Elements of The Crypt

55The Crypt—displaying player information

.

In the game, you may have to display player info a number of times and for a number
of players. You should use your new knowledge of functions to make the display of
information more efficient; make it code on demand—code you can execute by call-
ing a function.

4.5.1 A function to display player information

The showMovieInfo function from listing 4.13 looks like exactly the kind of function
you need. Whereas showMovieInfo displays information about movies, listing 4.14
shows a showPlayerInfo function doing a very similar job for players, producing the
following output:

> Kandra
> ------------------------------
> Kandra is in The Dungeon of Doom
> Kandra has health 50
> ------------------------------
>
> Dax
> ------------------------------
> Dax is in The Old Library
> Dax has health 40
> ------------------------------
>

var player1;
var player2;
var player;
var showPlayerInfo;

player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50
};

player2 = {
 name: "Dax",
 place: "The Old Library",
 health: 40
};

showPlayerInfo = function () {
 console.log(player.name);
 console.log("------------------------------");
 console.log(player.name + " is in " + player.place);
 console.log(player.name + " has health " + player.health);
 console.log("------------------------------");
 console.log("");
};

Listing 4.14 A function to display player information
(http://jsbin.com/mafade/edit?js,console)

Declare the variables
you’ll be using

Create objects using curly
braces and key-value pairs.
Assign them to variables.

Define a function
to display player
properties. The
code will run
when the
function is called

http://jsbin.com/mafade/edit?js,console

56 CHAPTER 4 Functions: code on demand
player = player1;
showPlayerInfo();

player = player2;
showPlayerInfo();

Excellent! That does the job. A single call to a function now displays player informa-
tion. It’s a shame you have to keep assigning different players to the player variable to
make it work; it would be better if you could somehow say to the function, “Show info
for player1” or “Show info for player2.” Well, passing information to and from func-
tions will be investigated in detail over the next three chapters. Flexibility, reusability,
efficiency, here we come!

4.6 Summary
■ A function is a block of code that you write once but use many times. It should

have a clear, single purpose.
■ You define a function by using the function keyword, parentheses, and a func-

tion body in a code block between curly braces:

function () {
 // Statements go here in the function body
};

■ You assign the function to a variable with the equals symbol, = , also known as
the assignment operator:

showPlayerInfo = function () { … };

■ Once a function is assigned to a variable, you call or invoke the function by add-
ing parentheses to the end of the variable name:

addTax();
showPlayerInfo();
evadeRaptor();

■ Be on the lookout for repetition; sections of code with the same structure
and only slight changes in values or variables used. Move repeated code into
a function.

■ Give functions clear names that communicate their purpose. Use the functions
to organize your code, making your programs easier to follow and maintain.

Assign one of the player objects to the player
variable so the function can access it

Call the function to display
properties of the player object

Assign the other player
object to the player variable

Call the function again.
That’s code on demand!

Arguments:
passing data to functions
Functions are an essential means of organization; you write them once and use
them many times. But so far, your functions have been tied to the values of variables
around them. It’s time to set your functions free, letting them name their own vari-
ables and passing them the data they need.

5.1 Function reuse and versatility
The functions you’ve used up to now have relied on variables declared and assigned
values elsewhere in the program. In the following listing, the showMessage function
relies on a variable called message, declared outside the function definition.

This chapter covers
■ Defining functions with parameters, ready to

accept data
■ Calling functions, passing in data with

arguments
57

58 CHAPTER 5 Arguments: passing data to functions
var message;
var showMessage;

message = "It's full of stars!";

showMessage = function () {
 console.log(message);
};

showMessage();

In the showMessage function definition, you use a variable called message. The message
variable has to exist for the function to do its job. If you change the name of the vari-
able, the function breaks. If message is renamed msg, as shown in the next listing, and
the program is run on JS Bin, you should get an error something like this: “Reference
error: Can’t find variable: message.” (Different browsers may give slightly different
error messages.)

var msg;
var showMessage;

msg = "It's full of stars!";

showMessage = function () {
 console.log(message);
};

showMessage();

The instructions in the function body can use variables defined elsewhere in your pro-
gram but that couples the function with the external variable; a better practice is to
pass the information a function needs to the function when it’s called. This helps
avoid the variables a function needs being misnamed, missing, deleted, or changed by
other parts of your program and makes it easier to follow the flow of the program and
spot mistakes if they occur.

 We don’t want arrogant Rock God functions demanding particular variables in their
dressing rooms before they’ll perform; we want easy-going functions that are reliable
and happy to strut their stuff wherever they are in the world. By decoupling functions
from variables, you make the functions more portable; the function definitions can be

Listing 5.1 Relying on a variable outside the function
(http://jsbin.com/taqusi/edit?js,console)

Listing 5.2 Breaking a function by changing a variable name
(http://jsbin.com/yaresa/edit?js,console)

Assign the string to be displayed
to the message variable

Use the message variable,
defined outside the showMessage
function, in the function body

Call the showMessage function. It uses the
current value of the message variable.

Assign the string to be
displayed to the msg variable

Use a variable called message
in the function body

Produce an error by trying to
call the showMessage function

http://jsbin.com/yaresa/edit?js,console
http://jsbin.com/taqusi/edit?js,console

59Passing information to functions
moved to other parts of your program or be reused in other programs or code libraries,
without causing havoc and throwing errors.

 So, how is this decoupling achieved?

5.2 Passing information to functions
Passing information to functions is achieved in two stages: when you define the func-
tion and when you call the function:

1 When you define the function, you set up variable names, called parameters, ready
for when you call the function.

2 When you call the function, you include data to assign to the variables you
named in step 1.

You’ll look at a number of examples over the course of this chapter (and there are
plenty more throughout the rest of the book), but there’s nothing like practice to
make permanent. The Further Adventures section for each code listing on JS Bin should
get you started.

5.2.1 Passing one argument to a function

It’s time to make use of those empty parentheses in your function definitions! To
pass information to functions when you call them, include it between the parenthe-
ses, like this:

showMessage("It's full of stars!");
showPlayerInfo("Kandra");
getMovieActors("The Hobbit");
square(12);

You pass each of the four functions some information for their code to use. Each value
included in the parentheses is called an argument. Each of the four functions shown
here includes a single argument. The arguments are “It’s full of stars!”, “Kandra”,
“The Hobbit”, and 12.

 To use the information in the parentheses, you need to make the functions ready
to accept it. You add a parameter when you define the function. The parameter shows
that the function expects you to give it some information when you call it, as shown in
figure 5.1.

function (param1) {

}

Parameter

param1 is available as a variable
in the function body Figure 5.1 Including a

parameter in the parentheses
when defining a function

60 CHAPTER 5 Arguments: passing data to functions
For the four functions in the previous example, the function definitions could be some-
thing like this:

showMessage = function (message) { … };
showPlayerInfo = function (playerName) { … };
getMovieActors = function (movieTitle) { … };
square = function (numberToSquare) { … };

Each function definition includes a parameter, shown in bold. The parameter is a vari-
able that you can use only inside the function body.

 Let’s update the showMessage function from listing 5.1 to accept a message,
rather than relying on an external variable. When defining the function, include a
message parameter. The message parameter is available as a variable in the function
body. Now when you call the function, you pass the message to display in parenthe-
ses, showMessage("It's full of stars!"). The function adds extra text and dis-
plays the following:

> The message is: It's full of stars!

var showMessage;

showMessage = function (message) {
 console.log("The message is: " + message);
};

showMessage("It's full of stars!");

When you call the showMessage function at the end of listing 5.3, you include the
string “It’s full of stars!” in the parentheses. A value included in the function call
parentheses like this is called an argument. The program assigns the argument to the
variable named message. The function then uses the message variable to generate
the string that’s logged to the console, "The message is: It's full of stars!"

 Table 5.1 lists the steps involved in declaring a function with parameters and then
calling it with different arguments.

Listing 5.3 Passing information to a function
(http://jsbin.com/xucemu/edit?js,console)

Table 5.1 Steps used to define and call a function, passing it data

Action Code Comments

Declare a variable var showMessage; Sets aside the name for
use in the program.

Include a parameter, message,
when defining the function

Use message anywhere
inside the function body

When the function “It’s full of stars!” is
assigned to message and the statements
in the function body are executed

http://jsbin.com/xucemu/edit?js,console

61Passing information to functions
You can call the showMessage function with any text you choose. The text is assigned
to the message variable and used as part of the full message logged to the console.

 In listing 5.4 you call the showMessage function with three different arguments,
leading to three different messages on the console:

> The message is: It's full of stars!
> The message is: Hello to Jason Isaacs
> The message is: Hello to Jason Isaacs and Stephen Fry

var showMessage;

showMessage = function (message) {
 console.log("The message is: " + message);
};

showMessage("It's full of stars!");
showMessage("Hello to Jason Isaacs");
showMessage("Hello to Jason Isaacs and Stephen Fry");

Define a function
with a parameter

function (message) {

}

Sets aside a variable
name, message, for use
in the function body.

Use the parameter function (message) {
 console.log(message);
}

The parameter is available
as a variable within the
function body.

Assign the function
to a variable

showMessage = function (message) {
 console.log(message);
};

Assigning the function to
a variable gives you a
label you can use to call
the function.

Call the function
with an argument

showMessage("It's full of stars!"); The code in the function
body is executed with the
argument in parentheses
assigned to message.

Call the function
again and again with
different arguments

showMessage("It's full of stars!");
showMessage("Yippee!");
showMessage("Cowabunga!");

Every time you call the
function, the argument
is assigned to the
message parameter.

Listing 5.4 Calling the same function with different arguments
(http://jsbin.com/zavavo/edit?js,console)

Table 5.1 Steps used to define and call a function, passing it data

Action Code Comments

Declare a
variable

Define a function with a
message parameter; assign
the function to a variable

Use the parameter in
the function body

Call the function,
passing a different
argument each time

http://jsbin.com/zavavo/edit?js,console

62 CHAPTER 5 Arguments: passing data to functions
Because you declared the name of the parameter along with the function definition,
the showMessage function no longer relies on variable names from elsewhere, making
it less brittle. Decoupling complete.

 Listing 5.5 shows the definition of a square function, including a numberToSquare
parameter. The function squares the number you pass to it as an argument. You call
the function four times to give the following output:

> 10 * 10 = 100
> -2 * -2 = 4
> 1111 * 1111 = 1234321
> 0.5 * 0.5 = 0.25

var square;

square = function (numberToSquare) {
 var result;
 result = numberToSquare * numberToSquare;
 console.log(numberToSquare + " * " + numberToSquare + " = " + result);
};

square(10);
square(-2);
square(1111);
square(0.5);

Listing 5.5 Using the square function
(http://jsbin.com/vequpi/edit?js,console)

Parameters vs. arguments
You knew those parentheses would come in handy!

The names you include in the parentheses when defining the function are available
as variables in the function body. They’re called parameters and show that you expect
information to be included when the function is called.

 var myExample;
 myExample = function (parameter) { … }

The values you include in the parentheses when calling the function are assigned
to the parameter variables to be used in the function body. These values are called
arguments.

 myExample(argument);

Don’t worry too much about the terminology; it can take a little while to get used
to. After you’ve created and used a few functions, you’ll pick up an intuitive sense
of what’s going on even if you mix up the terms parameter and argument from time
to time.

Square the number by
multiplying it by itself; the *
is the multiplication operator.

http://jsbin.com/vequpi/edit?js,console

63Passing information to functions
5.2.2 Passing multiple arguments to a function

You can define functions with as many parameters as they need to complete their
work. Simply separate the parameters with commas in the parentheses of the defini-
tion (figure 5.2).

Suppose you want a function to add two numbers together. If you have two pairs of
numbers, 30 and 23, and 2.8 and -5, the correct output would be

> The sum is 53
> The sum is -2.2

How do you do this?

var showSum;

showSum = function (number1, number2) {
 var total = number1 + number2;
 console.log("The sum is " + total);
};

showSum(30, 23);
showSum(2.8, -5);

When you call the showSum function, the program automatically assigns the two argu-
ments you provide to the two parameters in the definition, number1 and number2. For
the first call to showSum in listing 5.6, it’s as if the function body becomes

var number1 = 30;
var number2 = 23;
var total = number1 + number2;
console.log("The sum is " + total);

You can define a function with as many parameters as you want. As the number of
parameters increases, it becomes more likely for people (including you!) to make

Listing 5.6 A function with two arguments
(http://jsbin.com/siyelu/edit?js,console)

function (param1, param2, param3) {

}

Parameters

param1, param2, param3, are available
as variables in the function body

Figure 5.2 Including multiple parameters in a function definition

You define the function with
two parameters, number1
and number2.

You call the function with two
arguments, 30 and 23.

http://jsbin.com/siyelu/edit?js,console

64 CHAPTER 5 Arguments: passing data to functions
mistakes when using your function; they might miss an argument or put the argu-
ments in the wrong order when calling the function. A neat way to overcome the
problem is to pass an object to the function. The function definition needs only a sin-
gle parameter and the function body can access whichever properties it needs. You’ll
take a look at using objects with functions in chapter 7.

5.3 The Crypt—displaying player information
You’ll now apply your knowledge of JavaScript function arguments to The Crypt. Fig-
ure 5.3 shows where the focus of this section, showing player information by using func-
tions with arguments, fits into the overall structure of our ongoing game example.

In chapter 4, you wrote a showPlayerInfo function as code on demand. You could dis-
play player information on the console whenever you wanted, just by calling the func-
tion. Unfortunately, it relied on a player variable being set elsewhere in the code.
Let’s update the showPlayerInfo function, setting parameters so you can pass it the
information it needs directly.

 In order to display information about each player, you break the job into subtasks
and create functions for each piece of information. You then show information about
a player like this:

showPlayerName("Kandra");
showPlayerHealth("Kandra", 50);
showPlayerPlace("Kandra", "The Dungeon of Doom");

Each function has a specific job to do. If you want to display all of the information at
once, you wrap the individual functions inside one master function and pass it all the
information it needs:

showPlayerInfo("Kandra", "The Dungeon of Doom", 50);

player variables

Players

a player object

player items

Player Constructor

showing player info

Places

place objects

place items

showing place info

Place Constructor

place exits

using return values

using functions

using arguments

using objects

Maps

Game

linking places

render

get

go

Figure 5.3 Elements of The Crypt

65The Crypt—displaying player information
Over the next few sections, you define the four functions and see them working with
player objects. The first three functions are very similar; pay attention to what changes
and what stays the same. Notice how you use parameters when defining the functions
and how you use arguments when calling them.

5.3.1 Displaying players’ names

Your first function’s job is to display the player’s name. That’s it. No bells or whistles.
The next listing shows the showPlayerName function definition and calls the function
with two different names to produce the following output:

> Kandra
> Dax

var showPlayerName;

showPlayerName = function (playerName) {
 console.log(playerName);
};

showPlayerName("Kandra");
showPlayerName("Dax");

In the actual The Crypt program, you’re not likely to call the showPlayerName function
with literal values like "Kandra" and "Dax". You’re much more likely to use variables.
In particular, JavaScript objects will represent players. The next listing updates the
code to use a couple of player objects instead.

var player1;
var player2;
var showPlayerName;

showPlayerName = function (playerName) {
 console.log(playerName);
};

player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50
};

player2 = {
 name: "Dax",
 place: "The Old Library",
 health: 40
};

Listing 5.7 Displaying a player’s name
(http://jsbin.com/yubahi/edit?js,console)

Listing 5.8 Displaying a player’s name via an object property
(http://jsbin.com/juhewi/edit?js,console)

Include a playerName parameter
when defining the function

Log the value assigned to
the parameter when the
function is called

http://jsbin.com/yubahi/edit?js,console
http://jsbin.com/juhewi/edit?js,console

66 CHAPTER 5 Arguments: passing data to functions
showPlayerName(player1.name);
showPlayerName(player2.name);

That’s names covered. Next up, health.

5.3.2 Displaying players’ health

The showPlayerHealth function definition in the following listing includes two
parameters, playerName and playerHealth, to produce output like this:

> Kandra has health 50
> Dax has health 40

var showPlayerHealth;

showPlayerHealth = function (playerName, playerHealth) {
 console.log(playerName + " has health " + playerHealth);
};

showPlayerHealth("Kandra", 50);
showPlayerHealth("Dax", 40);

The call to showPlayerHealth in listing 5.9 used the literal values "Kandra" and 50. In
the final program, each player’s information is assigned to the properties of a player
object. Your calls to showPlayerHealth are much more likely to use those properties
than hard-coded values. The next listing updates the code to include player objects.

var player1;
var player2;
var showPlayerHealth;

showPlayerHealth = function (playerName, playerHealth) {
 console.log(playerName + " has health " + playerHealth);
};

player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50
};

player2 = {
 name: "Dax",
 place: "The Old Library",
 health: 40
};

Listing 5.9 Displaying a player’s health
(http://jsbin.com/nomija/edit?js,console)

Listing 5.10 Displaying a player’s health via object properties
(http://jsbin.com/zufoxi/edit?js,console)

Pass the player’s name to the
showPlayerName function as an argument

Include two parameters, playerName
and playerHealth, in the definition

Use the values assigned to
the parameters to produce a

string for display

http://jsbin.com/nomija/edit?js,console
http://jsbin.com/zufoxi/edit?js,console

67The Crypt—displaying player information
showPlayerHealth(player1.name, player1.health);
showPlayerHealth(player2.name, player2.health);

Name: check. Health: check. That just leaves location.

5.3.3 Displaying players’ locations

The showPlayerPlace function definition in the following listing also includes two
parameters, this time playerName and playerPlace, and produces output like this:

> Kandra is in The Dungeon of Doom
> Dax is in The Old Library

var showPlayerPlace;

showPlayerPlace = function (playerName, playerPlace) {
 console.log(playerName + " is in " + playerPlace);
};

showPlayerPlace("Kandra", "The Dungeon of Doom");
showPlayerPlace("Dax", "The Old Library");

Once again, switching from the hard-coded literal values in listing 5.11 to object prop-
erties gives you an updated version in the next listing.

var player1;
var player2;
var showPlayerPlace;

showPlayerPlace = function (playerName, playerPlace) {
 console.log(playerName + " is in " + playerPlace);
};

player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50
};

player2 = {
 name: "Dax",
 place: "The Old Library",
 health: 40
};

showPlayerPlace(player1.name, player1.place);
showPlayerPlace(player2.name, player2.place);

Listing 5.11 Displaying a player’s location
(http://jsbin.com/yifahe/edit?js,console)

Listing 5.12 Displaying a player’s location via object properties
(http://jsbin.com/mejuki/edit?js,console)

Pass each player’s name
and health properties to the
showPlayerHealth function
as arguments

http://jsbin.com/yifahe/edit?js,console
http://jsbin.com/mejuki/edit?js,console

68 CHAPTER 5 Arguments: passing data to functions
You have the three functions you need to show individual pieces of information about
players. Now it’s time to use the functions together.

5.3.4 Putting it all together—displaying players’ information

The showPlayerInfo function uses your three individual functions—showPlayer-

Name, showPlayerHealth, and showPlayerPlace—and adds a touch of formatting
to produce a display of each player’s properties. The output for one player looks
like this:

>
> Kandra
> ----------------------------
> Kandra is in The Dungeon of Doom
> Kandra has health 50
> ----------------------------
>

The next listing leaves out the three component functions to focus on the new func-
tion. They’re included on JS Bin.

var showPlayerInfo;

showPlayerInfo = function (playerName, playerPlace, playerHealth) {
 console.log("");

 showPlayerName(playerName);

 console.log("----------------------------");

 showPlayerPlace(playerName, playerPlace);
 showPlayerHealth(playerName, playerHealth);

 console.log("----------------------------");
 console.log("");
};

showPlayerInfo("Kandra", "The Dungeon of Doom", 50);
showPlayerInfo("Dax", "The Old Library", 40);

You call the showPlayerInfo function with three arguments each time. It, in turn,
passes the required arguments on to the showPlayerName, showPlayerHealth, and
showPlayerPlace functions.

 You end with all the pieces put together in a single listing, shown next. It includes
each variable declaration and assignment as a single step and uses player object prop-
erties, like player1.name, rather than literal values, like "Kandra", when calling show-
PlayerInfo.

Listing 5.13 Displaying a player’s information
(http://jsbin.com/likafe/edit?js,console)

http://jsbin.com/likafe/edit?js,console

69Summary
var showPlayerName = function (playerName) {
 console.log(playerName);
};

var showPlayerHealth = function (playerName, playerHealth) {
 console.log(playerName + " has health " + playerHealth);
};

var showPlayerPlace = function (playerName, playerPlace) {
 console.log(playerName + " is in " + playerPlace);
};

var showPlayerInfo = function (playerName, playerPlace, playerHealth) {
 console.log("");
 showPlayerName(playerName);
 console.log("----------------------------");
 showPlayerPlace(playerName, playerPlace);
 showPlayerHealth(playerName, playerHealth);
 console.log("----------------------------");
 console.log("");
};

var player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50
};

var player2 = {
 name: "Dax",
 place: "The Old Library",
 health: 40
};

showPlayerInfo(player1.name, player1.place, player1.health);
showPlayerInfo(player2.name, player2.place, player2.health);

5.4 Summary
■ Define a function with named parameters to show that you expect to pass data to

the function when you call it. Commas separate the parameters inside the
parentheses of the definition:

function (param1, param2) { … }

■ Use the parameters inside the function body as if they are variables.
■ Call the function with arguments. When you run the program, the arguments

are automatically assigned to the parameters for use in the function body:

myFunction(arg1, arg2)

Listing 5.14 Displaying a player’s information using properties
(http://jsbin.com/loteti/edit?js,console)

http://jsbin.com/loteti/edit?js,console

Return values:
getting data from functions
In chapter 4 you discovered how functions can increase your efficiency by allowing
you to write code once but use it many times. In chapter 5, you made functions
much more flexible by passing them information with each call; a function can act
in different ways and produce different outputs depending on the arguments you
give it. In this chapter you give functions the chance to talk back by returning the
results of their work. You also call functions directly at the console prompt to inves-
tigate the values they return.

6.1 Returning data from functions
It’s often useful to have a function do some work for you and give you back the
result of that work. You can then use the result however you want. In listing 5.6 you
saw a showSum function that displays the sum of two numbers on the console. It may
be better to have an add function that simply adds the numbers and returns the
result. Whereas showSum always displays the result on the console, with add you can
display the result the function returns if you choose, use it in further calculations,
send it across a network, or save it to a database.

This chapter covers
■ Returning information from functions
■ The return keyword
■ Experimenting at the console prompt
70

71Returning data from functions
6.1.1 The return value replaces the function call

Most of the functions you’ve written so far have executed code for you on demand
and then logged something to the console. They’ve helped you to break up programs
into understandable chunks. By assigning the functions to well-named variables, you’ve
made the programs easier to follow. For an example of well-named variables, here’s a
snippet of code for displaying player information in The Crypt:

showPlayerName("Kandra");
showLine();
showPlayerPlace("Kandra", "The Dungeon of Doom");
showPlayerHealth("Kandra", 50);
showLine();

Even if you don’t know how the functions perform their jobs, their names give you a
good idea of the intentions of the code.

 Functions can also return information: the result of a calculation, a constructed
piece of text, or data from a database. You can assign the returned value to a variable or
use it as an argument with other functions. The following examples show, in bold, calls
to the four functions add, getPlayerPlace, findPlanetPosition, and getMessage:

var sum = add(50, 23);
var placeInfo = getPlayerPlace("Kandra", "The Dungeon of Doom");
console.log(findPlanetPosition("Jupiter"));
console.log(getMessage());

Each function returns a value and the returned value replaces the function call. Assuming
the functions return the following values in bold, the previous four statements become

var sum = 73;
var placeInfo = "Kandra is in The Dungeon of Doom";
console.log("Jupiter: planet number 5");
console.log("I’m going on an adventure!");

Figure 6.1 shows what happens when you call the add function.
 To return a value from a function, use the return keyword.

var sum = add(50, 23);

var sum = 73;

You call the add function

The function returns the value 73

The return value replaces
the function call

Figure 6.1 You call the add function and it
returns the value 73.

72 CHAPTER 6 Return values: getting data from functions
6.1.2 The return keyword

Return a value from a function by using the return keyword. Whatever follows return
in a statement is the value that replaces the function call.

 Listing 6.1 shows the definition of a getMessage function. It includes a return state-
ment, a statement that starts with the return keyword:

return "I'm going on an adventure!";

The function returns the string "I'm going on an adventure!" because the string fol-
lows the return keyword. The program assigns the string to the response variable and
logs it to the console to show

> I'm going on an adventure!

var getMessage;
var response;

getMessage = function () {
 return "I'm going on an adventure!";
};

response = getMessage();

console.log(response);

The getMessage function always returns the same value. It’s common to determine
the return value by using information you pass in as arguments when you call the
function.

6.1.3 Using arguments to determine the return value

In chapter 5, you passed information into a function by including parameters in the
function definition and arguments in the function call. You can use that information
in the function body to determine the value the function returns and so call the func-
tion again and again with different arguments to produce different return values.

 The following listing shows a getHelloTo function that returns a string including a
name passed in as an argument. The program assigns the return value to a variable
and logs it to the console.

> Hello to Kandra

var getHelloTo;
var fullMessage;

Listing 6.1 Returning a value from a function
(http://jsbin.com/yucate/edit?js,console)

Listing 6.2 Using an argument to determine the return value
(http://jsbin.com/nijijo/edit?js,console)

Return the message from
the function by using the
return keyword

Call the getMessage function
and assign the returned value
to the response variable

http://jsbin.com/yucate/edit?js,console
http://jsbin.com/nijijo/edit?js,console

73Returning data from functions
getHelloTo = function (name) {
 return "Hello to " + name;
};

fullMessage = getHelloTo("Kandra");

console.log(fullMessage);

In listing 6.2, you assign the return value to a variable, fullMessage, and log it to the
console. The variable is redundant; you could just log the return value directly, as
shown in the next listing, in which you call the getHelloTo function twice to give the
following output:

> Hello to Kandra
> Hello to Dax

var getHelloTo;

getHelloTo = function (name) {
 return "Hello to " + name;
};

console.log(getHelloTo("Kandra"));
console.log(getHelloTo("Dax"));

Functions can return any type of value: strings, numbers, objects, and even other func-
tions. Let’s look at an example that returns a number.

 Figure 6.2 shows a call to the add function, add(50, 23). The figure shows how the
arguments passed to add are used to calculate the return value.

Listing 6.3 Using the return value as an argument
(http://jsbin.com/yapic/edit?js,console)

Include a parameter in
the function definition

Use the value assigned to
the parameter to build the
return value

Call the getHelloTo function
and use the return value as
an argument for console.log

var sum = add(50 , 23);

var sum = 73 ;

The return value
replaces the
function call

function (number1 , number2)

return 73 ;

= 50 + 23 ;

= 73 ;

var total = number1 + number2 ;

Figure 6.2 The add
function calculates the
return value.

http://jsbin.com/yapic/edit?js,console

74 CHAPTER 6 Return values: getting data from functions
The next listing shows the code to make the add function do its thing. Notice, in par-
ticular, the return keyword.

var add;

add = function (number1, number2) {
 var total = number1 + number2;

 return total;
};

var sum = add(50, 23);

console.log(sum);

add(50, 23) calls the add function, assigning 50 to number1 and 23 to number2. The
value of number1 is then added to the value of number2 and the result assigned to the
total variable. The return keyword then ends the function and replaces the call to
the function with the value of total.

var sum = add(50, 23);

becomes

var sum = 73;

because add(50, 23) returns 73.
 Remember, the assignment operator, =, works by assigning the value on its right to

the variable on its left. If a function call is on its right, then it assigns the function’s
return value.

 The total variable in the add function in listing 6.4 isn’t really needed; it’s
assigned a value and then immediately returned. You could have returned the result
of the calculation directly, as the totalCost function does in listing 6.5. Given the call-
out charge and hourly rate charged by a plumber, totalCost calculates the total cost
for a certain number of hours of work. So, say the call-out charge is $30 and the
plumber charges $40 per hour, what is the total cost for three hours of work? total-
Cost(30, 40, 3) should return the result $150.

var totalCost;

totalCost = function (callOutCharge, costPerHour, numberOfHours) {
 return callOutCharge + costPerHour * numberOfHours;
};

console.log("$" + totalCost(30, 40, 3));

Listing 6.4 Returning the sum of two numbers
(http://jsbin.com/haqapu/edit?js,console)

Listing 6.5 A function with three arguments
(http://jsbin.com/jedigi/edit?js,console)

Assign the result of the
calculation to the total variable

Use the return keyword to pass the result
back to where the function is called

Call the add function and assign the
value returned to the sum variable

Evaluate the total cost and return the value

The call to totalCost is replaced
by the value returned.

http://jsbin.com/jedigi/edit?js,console
http://jsbin.com/haqapu/edit?js,console

75Experimenting at the console prompt
When you call the totalCost function, it evaluates the calculation to the right of the
return keyword and returns the value. It follows the usual rules of arithmetic: it per-
forms the multiplication first and then the addition: 30 + 40 * 3 = 30 + 120 = 150.

6.2 Experimenting at the console prompt
Programmers don’t generally use the console in production, that is, in published pro-
grams and websites. They use it in development, when designing and writing pro-
grams. It provides a convenient way for programmers (that’s you) to log values and
errors and investigate the state of their programs while they’re running. That inter-
activity, the chance to get immediate feedback, makes the console really useful for
learning—particularly for learning through experimentation. It’s time to go on an
adventure of discovery with the functions you’ve seen so far in this chapter.

6.2.1 Calling functions

The next listing includes four functions from earlier listings. If you run the pro-
gram, it won’t produce any output on the console; it doesn’t include any calls to
console.log.

var getMessage;
var getHelloTo;
var add;
var totalCost;

getMessage = function () {
 return "I'm going on an adventure!";
};

getHelloTo = function (name) {
 return "Hello to " + name;
};

add = function (number1, number2) {
 return number1 + number2;
};

totalCost = function (callOutCharge, costPerHour, numberOfHours) {
 return callOutCharge + costPerHour * numberOfHours;
};

Running the program assigns the four functions to the four variables declared at the
top of the program. You can then access the variables from the console prompt. You
can call the functions assigned to the variables to investigate their return values.

 Follow the link to the listing on JS Bin and make sure you run the program. At the
console prompt type

> getMessage()

Listing 6.6 A collection of functions that return values
(http://jsbin.com/lijufo/edit?js,console)

http://jsbin.com/lijufo/edit?js,console

76 CHAPTER 6 Return values: getting data from functions
and press Enter. The getMessage function runs and displays its return value:

 "I'm going on an adventure!"

At the prompt, press the up arrow on your keyboard. It should bring up the last line
you typed. (You can navigate through your previous entries at the console with the up
and down arrows.) Press Enter to resubmit a command. The getMessage function
always returns the same string. If you look at its function body, you can see it returns a
string literal, a hard-coded value.

return "I'm going on an adventure!";

The next function in the program, getHelloTo, includes a name parameter in its defi-
nition. The name parameter allows the return value to vary in response to the argu-
ment you pass to the function when you call it.

getHelloTo = function (name) {
 return "Hello to " + name;
};

Have a go at calling the function at the console with different arguments each time:

> getHelloTo("Jason")
 "Hello to Jason"
> getHelloTo("Rosemary")
 "Hello to Rosemary"

You can immediately see how changing the argument affects the return value.

6.2.2 Declaring new variables

As well as giving you access to variables declared in your programs, the console allows
you to declare new variables and assign them values.

 Carrying straight on from the previous section, at the console type

> var friend

and press Enter. The console displays the value of your previous entry. Because you
didn’t assign a value to the friend variable, undefined is logged to the console.

 undefined

Give it a value. Type

> friend = "Amber"

and press Enter. The console displays the new value.

 "Amber"

77The Crypt—building player information strings
Finally, use your new friend variable as an argument for the getHelloTo function.

> getHelloTo(friend)
 "Hello to Amber"

Have a play with the add and totalCost functions, passing them different arguments
and checking the return values displayed on the console, for example:

> add(30, 12)
 42
> totalCost(10, 20, 3)
 70

The console is more than a place to log messages from your programs. You can really
dig into your programs and check that they behave as expected. Don’t wait for permis-
sion; jump in and test all the listings.

 Now let’s use your new knowledge of return values to improve how The Crypt dis-
plays player information.

6.3 The Crypt—building player information strings
Figure 6.3 shows where the focus of this section, showing player information by using
return values, fits into the overall structure of our ongoing game example.

In chapter 5, you divided the work of displaying player information among a number
of functions, with each function having a specific job to do.

showPlayerName("Kandra");
showPlayerPlace("Kandra", "The Dungeon of Doom");
showPlayerHealth("Kandra", 50);

The functions each logged a string of information to the console. But what if you
don’t want the information on the console? You might want to send it in an email,

player variables

Players

a player object

player items

Player Constructor

showing player info

Places

place objects

place items

showing place info

Place Constructor

place exits

using return values

using functions

using arguments

using objects

Maps

Game

linking places

render

get

go

Figure 6.3 Elements of The Crypt

78 CHAPTER 6 Return values: getting data from functions
serve it as a response to a web request, or append it to an existing element on a web
page. It would be more flexible if the functions built the information strings and
returned them for the program to use as required.

6.3.1 Building strings for a player’s name, health, and location

You pass your new functions the information they need as arguments and they
return a string containing that information. The kind of return values you expect
are shown here:

getPlayerName("Kandra"); // --> "Kandra"
getPlayerHealth("Kandra", 50); // --> "Kadra has health 50"
getPlayerPlace("Kandra", "The Dungeon"); // --> "Kandra is in The Dungeon"

First up is getPlayerName. At the moment it just returns the name it’s given, which
seems like a waste of time. But defining a function allows you to make all the player
information accessible in the same way; getting the name is similar to getting the
health or the location. It also makes it easier to update the code later if you decide to
change how the name is displayed. The following listing shows the getPlayerName
function definition and an example call to it, producing the output

> Kandra

var getPlayerName;

getPlayerName = function (playerName) {
 return playerName;
};

console.log(getPlayerName("Kandra"));

The next two functions, getPlayerHealth and getPlayerPlace, are very similar, both
building a simple string from the information passed in. The next listing includes the
definitions of both functions along with some usage examples, producing the follow-
ing on the console:

> Kandra has health 50
> Kandra is in The Dungeon of Doom

var getPlayerHealth;
var getPlayerPlace;

getPlayerHealth = function (playerName, playerHealth) {
 return playerName + " has health " + playerHealth;
};

Listing 6.7 Getting a string for a player’s name
(http://jsbin.com/hijeli/edit?js,console)

Listing 6.8 Getting strings for a player’s health and location
(http://jsbin.com/pemore/edit?js,console)

http://jsbin.com/hijeli/edit?js,console
http://jsbin.com/pemore/edit?js,console

79The Crypt—building player information strings
getPlayerPlace = function (playerName, playerPlace) {
 return playerName + " is in " + playerPlace;
};

console.log(getPlayerHealth("Kandra", 50));
console.log(getPlayerPlace("Kandra", "The Dungeon of Doom"));

Calling the three functions from one main getPlayerInfo function will give you the
display string you want. The next section shows how the pieces are assembled.

6.3.2 A function for player information—putting the pieces together

With the pieces in place you can now build the main function to produce a string of
information about a player. You want the output to look something like this:

>
> Kandra
> ********************
> Kandra is in The Dungeon of Doom
> Kandra has health 50
> ********************
>

To construct the lines of characters separating the player information, you make use
of a getBorder function that returns a line of asterisk symbols. The listing that follows
shows the getPlayerInfo definition. It includes calls to other functions not shown in
the printed listing but included in the JS Bin version.

var getPlayerInfo;

getPlayerInfo = function (playerName, playerPlace, playerHealth) {
 var playerInfo;

 playerInfo = "\n" + getPlayerName(playerName);
 playerInfo += "\n" + getBorder();
 playerInfo += "\n" + getPlayerPlace(
 playerName, playerPlace);
 playerInfo += "\n" + getPlayerHealth(
 playerName, playerHealth);
 playerInfo += "\n" + getBorder();
 playerInfo += "\n";

 return playerInfo;
};

console.log(getPlayerInfo("Kandra", "The Dungeon of Doom", 50));

The getPlayerInfo function builds up the player information string piece by piece,
appending the strings returned by the functions called to the playerInfo variable.
The extra string, \n, appended at each stage is a new-line character; text following the

Listing 6.9 Getting a string for a player’s information
(http://jsbin.com/javuxe/edit?js,console)

Build up the info string by
using the other functions
to create the pieces

Use += to
append a string to
an existing string

Return the completed
info string

http://jsbin.com/javuxe/edit?js,console

80 CHAPTER 6 Return values: getting data from functions
new-line character will appear on a new line on the console. You use the += operator
to append a string to the end of an existing string.

 The final example for this chapter gathers all of the code into a single listing, list-
ing 6.10, along with two player objects used to test the getPlayerInfo function. It also
uses a different separator character in the getBorder function, producing output for
both players like this:

>
> Kandra
> ================================
> Kandra is in The Dungeon of Doom
> Kandra has health 50
> ================================
>
>
> Dax
> ================================
> Dax is in The Old Library
> Dax has health 40
> ================================
>

var getPlayerName = function (playerName) {
 return playerName;
};

var getPlayerHealth = function (
 playerName, playerHealth) {
 return playerName + " has health " + playerHealth;
};

var getPlayerPlace = function (
 playerName, playerPlace) {
 return playerName + " is in " + playerPlace;
};

var getBorder = function () {
 return "================================";
};

var getPlayerInfo = function (
 playerName, playerPlace, playerHealth) {

 var playerInfo;

 playerInfo = "\n" + getPlayerName(playerName);
 playerInfo += "\n" + getBorder();
 playerInfo += "\n" + getPlayerPlace(playerName, playerPlace);
 playerInfo += "\n" + getPlayerHealth(playerName, playerHealth);

Listing 6.10 Displaying player information using objects
(http://jsbin.com/puteki/edit?js,console)

Define functions to
return strings of
specific player info

Define a function to return
a string used as a border

Define a function that calls
previous functions to build
a player info string

http://jsbin.com/puteki/edit?js,console

81Summary
 playerInfo += "\n" + getBorder();
 playerInfo += "\n";

 return playerInfo;
};

var player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50
};

var player2 = {
 name: "Dax",
 place: "The Old Library",
 health: 40
};

console.log(
 getPlayerInfo(
 player1.name, player1.place, player1.health));

console.log(
 getPlayerInfo(
 player2.name, player2.place, player2.health));

You’ve successfully switched from functions that always print the output on the con-
sole to ones that return player information as strings. You then choose what to do with
the strings.

 Having to pass individual bits of information about the players to the functions is a
bit of a drag. The different functions require different bits of info and you have to
make sure to put the arguments in the right order. It would be easier if you could just
pass the whole player object as an argument and let the functions access whichever
properties they need. In chapter 7 you’ll see how useful it is to use JavaScript objects
both as arguments and as return values.

6.4 Summary
■ Pass information out of functions by using the return keyword:

return "Pentaquark!";
return 42;
return true;

■ Use a function call as a value to assign to a variable or use as an argument. The
value the function returns replaces the function call:

var particle = getDiscovery();
console.log(getPlayerPlace("Kandra"));

Create two
player objects

Test the functions,
displaying the
returned strings
on the console

82 CHAPTER 6 Return values: getting data from functions
■ Include parameters in the function definition and use the arguments passed in
to the function to determine the value returned:

var sum = add(28, 14);

■ Use the console to explore and test programs.
■ Call functions at the console prompt and see their return values displayed.
■ Declare variables at the console, assign them values, and use them as arguments

for functions.

Object arguments:
functions working

with objects
This is the last of the run of four chapters introducing functions. By now, you
know about using functions to execute code on demand and passing information
to and from functions using parameters, arguments, and the return keyword.
You’ve also seen how to use objects to collect values together as named properties.
Well, it’s time to combine functions and objects to turbocharge productivity, effi-
ciency, and readability.

 Remember the first-aid kit from chapter 3? We consider the kit to be a single
object that we can pass around, pack in a rucksack, and speak about. Such encapsu-
lation, or chunking, where we treat a collection as singular, is an important part of
how we as humans cope with complex information, both in language and in memory.

This chapter covers
■ Using objects as arguments
■ Accessing object properties from within

a function
■ Adding new object properties from within

a function
■ Returning objects from functions
■ Setting functions as properties of objects
83

84 CHAPTER 7 Object arguments: functions working with objects
When the need arises, we can consider the elements that make up the kit: antiseptic,
plasters, bandages, and so on.

 You use the same concept of encapsulation throughout this chapter as you pass
objects to and from functions as arguments and return values.

7.1 Using objects as arguments
Being able to pass an object to a function is really useful, especially if the function
needs to access lots of the object’s properties. You need only a single parameter in the
function definition and you don’t need a long list of arguments when calling the func-
tion. showPlayerInfo(player1) is neater, more easily understood, and less prone to
error than showPlayerInfo(player1.name, player1.location, player1.health).

 You can pass the same information to the function but wrapped into a single object
rather than as separate values (figure 7.1).

7.1.1 Accessing properties of an object argument

Inspired by the space adventures of New Horizons, Curiosity, Rosetta, and Philae, you
decide to write a quick app for displaying information about the solar system. One fea-
ture of the app is to display information about planets.

 Your first listing shows the getPlanetInfo function with a planet parameter.
When you call the function using a planet object as an argument, the function body
returns a string built using some of the planet’s properties. The code produces the fol-
lowing output:

> Jupiter: planet number 5

var planet1;
var getPlanetInfo;

planet1 = {
 name: "Jupiter",

Listing 7.1 Passing a function an object as an argument
(http://jsbin.com/tafopo/edit?js,console)

showPlayerInfo(player1);

showPlayerInfo(player1.name , player1.location , player1.health);

An object as a single argument

Multiple arguments can be harder to work with

Figure 7.1 A single object as an argument is neater than multiple arguments.

http://jsbin.com/tafopo/edit?js,console

85Using objects as arguments
 position: 5,
 type: "Gas Giant",
 radius: 69911,
 sizeRank: 1
};

getPlanetInfo = function (planet) {
 return planet.name + ": planet number " + planet.position;
};

console.log(getPlanetInfo(planet1));

Passing an object to a function as a single argument is neat and tidy. There’s no need
to make sure you’ve included all the required arguments in the right order—a single
argument does the job.

 Once you’ve passed an object to a function, JavaScript automatically assigns it to
the parameter included in the function’s definition.

 You access the properties of the object through the parameter, as shown in fig-
ure 7.2. The function has full control of the object via the parameter; it can even
add new properties.

7.1.2 Adding properties to an object argument

When you pass an object to a function as an argument, the code in the function body
has access to the object’s properties. It can read them, change them, and delete them
and can add new properties too.

 Listing 7.2 shows two functions with planet parameters. When you pass a planet
object, encapsulating a name and a radius, to the calculateSizes function, the func-
tion adds two new properties, area and volume, to the object (figure 7.3).

Include a planet
parameter, expecting
a planet object to be
passed in

Access
properties of
the planet
object

Call the getPlanetInfo
function, passing in a
planet as an argument

A single parameter

getPlanetInfo = function (planet) {

 return planet.name + ": planet number " + planet.positio n;

};

The properties of the object can be accessed inside the function body

planet

planet.name planet.position

Figure 7.2 Object properties can be accessed inside the function body.

86 CHAPTER 7 Object arguments: functions working with objects

vo
pro
The displaySizes function uses the two new properties to print information about
the planet on the console:

> Jupiter
> surface area = 61426702271.128 square km
> volume = 1431467394158943.2 cubic km

var planet1 = { name: "Jupiter", radius: 69911 };

var calculateSizes = function (planet) {
 var r = planet.radius;
 planet.area = 4 * 3.142 * r * r;
 planet.volume = 4 * 3.142 * r * r * r / 3;
};

var displaySizes = function (planet) {
 console.log(planet.name);
 console.log("surface area = " + planet.area + " square km");
 console.log("volume = " + planet.volume + " cubic km");
};

calculateSizes(planet1);
displaySizes(planet1);

You create the planet object and assign it to the planet1 variable:

planet1 = { name: "Jupiter", radius: 69911 };

Listing 7.2 A function that adds properties to an object
(http://jsbin.com/qevodu/edit?js,console)

A single parameter

calculateSizes = function (planet) {

 var r = planet.radius;

 planet.area = 4 * 3.142 * r * r;

 planet.volume = 4 * 3.142 * r * r * r / 3;

};

The function adds
two new properties
to the planet object

planet

planet.area

planet.volume

Figure 7.3 The calculateSizes function adds new properties to the planet object.

Include a planet parameter
in the definition of the
calculateSizes function

Add an area property to the
planet object passed to the
function when it’s calledAdd a

lume
perty Include a planet parameter

in the definition of the
displaySizes function

Pass the planet1 object as an
argument to both functions

http://jsbin.com/qevodu/edit?js,console

87Returning objects from functions
When you call the calculateSizes function, you pass planet1 to it as an argument:

calculateSizes(planet1);

JavaScript assigns the object referred to by planet1 to the planet parameter for use
within the function. The function uses the planet parameter to add two new proper-
ties to the object, planet.area and planet.volume. By the time you call the display-
Sizes function, the object has the two new properties needed to display all the
required information:

displaySizes(planet1);

As well as passing objects to functions, you can return objects from functions.

7.2 Returning objects from functions
Just as passing objects to functions as arguments is an efficient way of moving informa-
tion to where it’s needed, so is using objects as return values. Functions can either
manipulate objects that you pass to them and then return them, or they can return
brand-new objects that they create in the function body.

 This section explores two examples: the first uses a number of parameters to
build a new planet object and the second uses two object parameters to create a
point in 2D space.

7.2.1 Building planets—an object creation function

Back with your solar system app, you decide to streamline the creation of planets. You
write a function to which you pass the key facts, and it returns a planet object with
properties set accordingly. Your buildPlanet function lets you create planets like this:

planet1 = buildPlanet("Jupiter", 5, "Gas Giant", 69911, 1);

Figure 7.4 shows how JavaScript assigns the arguments to parameters when you call
buildPlanet. You use the parameters to create a new object.

 Listing 7.3 shows the definition of the buildPlanet function. It also has a get-
PlanetInfo function that it uses to get planet information for display. Once displayed,
the information looks like this:

JUPITER: planet 5
NEPTUNE: planet 8

Notice here how the planet names are in uppercase. The getPlanetInfo function
makes use of a built-in JavaScript function, toUpperCase, that converts strings to
uppercase. toUpperCase and some other JavaScript functions will be discussed in sec-
tion 7.3.

88 CHAPTER 7 Object arguments: functions working with objects
var buildPlanet;
var getPlanetInfo;
var planet1;
var planet2;

buildPlanet = function (name, position, type, radius, rank) {
 return {
 name: name,
 position: position,
 type: type,
 radius: radius,
 sizeRank: rank

Listing 7.3 A function to create planets
(http://jsbin.com/coyeta/edit?js,console)

function (name , position , type , radius , rank)

return {

 name: name,

 position: position ,

 type: type ,

 radius: radius ,

 sizeRank: rank

};

name

position

type

radius

rank

name position type radius rank

planet1 = buildPlanet("Jupiter", 5 , "Gas Giant" , 69911 , 1);"Jupiter" 5 "Gas Giant" 69911 1

return {

 name: "Jupiter" ,

 position: 5 ,

 type: "Gas Giant" ,

 radius: 69911 ,

 sizeRank: 1

};

"Jupiter"

5

"Gas Giant"

69911

1

planet1 = {
 name: "Jupiter",
 position: 5,
 type: "Gas Giant",
 radius: 69911,
 sizeRank: 1
};

The return value
replaces the
function call

Figure 7.4 JavaScript assigns the arguments to parameters when you call buildPlanet. The
function uses the parameters to create an object.

Create an object
using curly braces
and immediately
return it from the
function

Create a name
property and assign
it the value of the
name parameter

http://jsbin.com/coyeta/edit?js,console

89Returning objects from functions
 };
};

getPlanetInfo = function (planet) {
 return planet.name.toUpperCase() + ": planet " + planet.position;
};

planet1 = buildPlanet("Jupiter", 5, "Gas Giant", 69911, 1);
planet2 = buildPlanet("Neptune", 8, "Ice Giant", 24622, 4);

console.log(getPlanetInfo(planet1));
console.log(getPlanetInfo(planet2));

The key-value pairs inside the object created by the buildPlanet function look a little
strange at first:

name: name, position: position, and so on.

For each key-value pair, the key is to the left of the colon and the value is to the right.
You use the parameters as values, so for the function call

planet1 = buildPlanet("Jupiter", 5, "Gas Giant", 69911, 1);

the object-creation code becomes

name: "Jupiter",
position: 5,
type: "Gas Giant",
radius: 69911,
sizeRank: 1

7.2.2 Points in 2D space

Keen to create an animation showing the planets in the solar system, you start to inves-
tigate coordinates in two dimensions. All of the coordinates have two values associated
with them, x and y. This seems like an obvious place to use objects. Each point is an
object with x and y properties:

point1 = { x : 3 , y : 4 };
point2 = { x : 0 , y : -2 };

You can access individual values using dot notation: point1.x, point2.y, and so on.
 As an initial experiment, you write a program to move a point a certain amount

in the x direction and a certain amount in the y direction. Because the change in
position also has x and y components, you use an object for that too. For example,
to represent a movement of four across and two down you use the object { x : 4,
y : -2 }.

 Listing 7.4 includes a move function that takes two arguments, an initial point
object and a change object. It returns a new point representing the final position if
you started from the first point and moved by the change specified.

90 CHAPTER 7 Object arguments: functions working with objects
 The program uses a showPoint function to produce the following output:

(2 , 5)
Move 4 across and 2 down
(6 , 3)

var point1;
var point2;
var move;
var showPoint;

move = function (point, change) {
 return {
 x: point.x + change.x,
 y: point.y + change.y
 };
};

showPoint = function (point) {
 console.log("(" + point.x + " , " + point.y + ")");
};

point1 = { x : 2, y : 5 };

point2 = move(point1, { x : 4, y : -2 });

showPoint(point1);
console.log("Move 4 across and 2 down");
showPoint(point2);

The second argument you pass to the move function in listing 7.4 is written using an
object literal, { x : 4, y : -2 }. You could assign it to a variable first but, because you
use it only once, a literal value is okay too. The two points are plotted and their coordi-
nates shown in figure 7.5.

Listing 7.4 Moving a point in 2D
(http://jsbin.com/baxuvi/edit?js,console)

Create an object using
curly braces and
immediately return it

Set the new coordinates by applying
the change to the original point

Pass in the original point as
a variable and the change
as an object literal

Figure 7.5 The points before and after the move of 4 across and 2 down (plotted using
desmos.com—an application written in JavaScript)

http://jsbin.com/baxuvi/edit?js,console

91Methods—setting functions as properties of objects
You’ve seen objects being passed to functions and objects being returned from func-
tions and, in listing 7.4, a function that uses objects as arguments and returns an object.
That’s functions using objects. You can also set functions as properties of objects.

7.3 Methods—setting functions as properties of objects
In JavaScript, you can use functions as values, just like numbers, strings, and objects.
That means you can pass them as arguments, return them from other functions, and
set them as properties of objects. In this section, continuing the theme of functions
working with objects, you look at an example of setting functions as properties of
an object.

7.3.1 Namespaces—organizing related functions

Let’s write some functions to help format text displayed on the console. Displaying
text is a big part of your interactive console applications, so the number of helper
functions you create will expand. For now, you start with two really simple functions:
blank returns an empty string and newLine returns a new-line character.

 Because all of the functions are related to the same job, it’s good to collect them
together. You can do just that by setting each function as the property of a single
object. Call it spacer:

var spacer = {};

Once you have an object, you can set functions as properties. First, here’s a function
to return an empty string:

spacer.blank = function () {
 return "";
};

Figure 7.6 illustrates how you create the function and then assign it to the blank prop-
erty of the spacer object.

spacer.blank = function () { return ""; };

Use dot notation
to refer to the blank

property of the
spacer object

Assign the function on the right
 to the property on the left

Create a function that
returns an empty string

Figure 7.6 Create a function and
assign it to an object property

92 CHAPTER 7 Object arguments: functions working with objects
Sometimes it’s useful to include line breaks in a string, to space it over multiple lines.
The special escape sequence, "\n", is called the new-line character. Add a function to
return the new-line character:

spacer.newLine = function () {
 return "\n";
};

Now you have two functions set as properties of the spacer object. When we use an
object to collect functions together in this way, we call it a namespace. The newLine and
blank functions belong to the spacer namespace. You can call the functions by add-
ing parentheses as normal:

console.log(spacer.blank());
console.log("Line 1" + spacer.newLine() + "Line 2");
console.log(spacer.blank());

That code snippet produces this output:

>
> Line 1
> Line 2
>

The individual functions don’t have to be added to the namespace one at a time. You
can use the object literal syntax, curly braces with comma-separated key-value pairs, to
set up the namespace with properties in place:

spacer = {
 blank: function () {
 return "";
 },

 newLine: function () {
 return "\n";
 }
};

Functions set as properties of an object are called methods. Currently, the spacer
object has two methods, blank and newLine. You’ll return to spacer in sections 7.3.4
and 7.3.5, where you’ll add more methods and have a play with it on JS Bin.

 JavaScript includes a number of useful objects and methods. Before you expand
your spacer object, let’s investigate Math and String methods.

7.3.2 Math methods

Math is a namespace built into JavaScript that provides properties and functions all
related to mathematical calculations. Listing 7.5 shows the Math.min and Math.max

93Methods—setting functions as properties of objects
methods in action. They return the smaller of two numbers and the larger of two
numbers, respectively. The program produces the following output:

3 is smaller than 12
-10 is smaller than 3

var showSmaller = function (num1, num2) {
 var smaller = Math.min(num1, num2);
 var larger = Math.max(num1, num2);

 console.log(smaller + " is smaller than " + larger);
};

showSmaller(12, 3);
showSmaller(-10, 3);

Math.min and Math.max, when used together, are useful for making sure a value is in a
specified range. Say a lineLength variable has to be between 0 and 40 inclusive. To
force lineLength to be at least zero you can use

lineLength = Math.max(0, lineLength);

If lineLength is greater than zero, it will be the biggest and its value won’t change.
But, if lineLength is less than zero, zero will be the biggest and lineLength will be
assigned zero.

 Similarly, you can force lineLength to be less than or equal to 40:

lineLength = Math.min(40, lineLength);

Listing 7.6 shows such constraints in action. line is a function that returns a separator
line of a specified length. The length must be between 0 and 40. Trying to display
lines of length 30, 40, and 50 produces the following output:

> ==============================
> ==
> ==

Notice, the last two lines are both of length 40. Although 50 is specified as the length
of the last line, the line function constrains the length to 40.

var line = function (lineLength) {
 var line = "==";
 lineLength = Math.max(0, lineLength);

Listing 7.5 Using Math.min and Math.max
(http://jsbin.com/moyoti/edit?js,console)

Listing 7.6 Using Math.min and Math.max to constrain an argument
(http://jsbin.com/qiziyo/edit?js,console)

Assign the smaller of the
two numbers to smaller

Assign the larger of
the two numbers
to larger

Make sure lineLength
is at least 0

http://jsbin.com/qiziyo/edit?js,console
http://jsbin.com/moyoti/edit?js,console

94 CHAPTER 7 Object arguments: functions working with objects
 lineLength = Math.min(40, lineLength);
 return line.substr(0, lineLength);
}

console.log(line(30));
console.log(line(40));
console.log(line(50));

The substr method returns part of a string and is discussed in the next section.
 There are a large number of Math methods for all kinds of mathematical tasks,

many of which are used often. You can investigate some of them at www.room51.co.uk/
js/math.html.

7.3.3 String methods

For every string you create, JavaScript makes available a number of methods. These
functions help you manipulate the strings in a variety of ways. The next listing uses the
toUpperCase method to convert a string to uppercase, like this:

> Jupiter becomes JUPITER

var planet = "Jupiter";
var bigPlanet = planet.toUpperCase();

console.log(planet + " becomes " + bigPlanet);

You use dot notation to call the method on the planet string. As a method, toUpper-
Case is able to use the value of the planet variable to which it’s attached; you don’t
need to pass planet to the function as an argument in parentheses.

 Although string methods can act on the variables to which they are attached,
they’re still functions and you can also pass them arguments. Figure 7.7 shows how the
substr method uses the value of message and two arguments.

The following listing shows an example of using the substr method, displaying a sub-
string on the console.

> choose to go

Listing 7.7 Converting a string to uppercase
(http://jsbin.com/jizaqu/edit?js,console)

Make sure lineLength
is at most 40

Use the substr string
method to return a line
of the right length

Use dot notation to call the
toUpperCase method on
the planet string

message.substr(3, 12);

substr uses the value
of message

substr also uses arguments
between parentheses

Figure 7.7 Methods can use
arguments as well as the value of the
object to which they’re attached.

http://jsbin.com/jizaqu/edit?js,console
http://www.room51.co.uk/js/math.html
http://www.room51.co.uk/js/math.html

95Methods—setting functions as properties of objects
var message = "We choose to go to the Moon!";

console.log(message.substr(3, 12));

The substr method accepts two arguments: the starting position in the original string
and the number of characters to return. When specifying the position of a character
in a string, counting is zero based: the first character is position 0, the second position
1, the third position 2, and so on. (I know starting at zero seems a bit odd at first; it’s
actually very common in programming languages.)

substr(3, 12) starts with the character at position 3, c, and returns a string of
length 12, from position 3 to position 14.

 But you don’t have to spend all your time counting the positions of characters in
strings, however exciting that sounds; you can use the indexOf method instead. The
indexOf method returns the position, or index, of the first occurrence of a specified
search string within a string.

 The next listing uses indexOf to find the position of the M character in a string. It
then passes the position to substr to grab a substring of length 3, producing the
bovine pronouncement Moo on the console.

var message = "The cow jumped over the Moon!";

var charIndex = message.indexOf("M");

console.log(message.substr(charIndex, 3));

You can use indexOf to find search strings longer than a single character. Here’s an
example using message from listing 7.9:

message.indexOf("cow"); // Returns 4
message.indexOf("the"); // Returns 20
message.indexOf("not"); // Returns -1

Notice that indexOf is case sensitive, so the and The are different, and it returns -1 if a
string is not found.

 Just like for Math, there are a lot of String methods available in JavaScript. Once
again, the book’s website has you covered: www.room51.co.uk/js/string-methods.html.

Listing 7.8 Finding substrings
(http://jsbin.com/mesisi/edit?js,console)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

W e c h o o s e t o g o

Listing 7.9 Finding a character with indexOf
(http://jsbin.com/bidabi/edit?js,console)

http://jsbin.com/mesisi/edit?js,console
http://jsbin.com/bidabi/edit?js,console
http://www.room51.co.uk/js/string-methods.html

96 CHAPTER 7 Object arguments: functions working with objects
7.3.4 spacer—more methods for your namespace

In section 7.3.1 you created a spacer object with a couple of functions attached, blank
and newLine. You now add a few more interesting functions to help format your out-
put nicely.

■ line is your line separator function, upgraded! It returns a line of a given
length between 0 and 40 characters long, now with a choice of five gorgeous
characters! ("*", "+", "=", "-", or " ").

spacer.line(10, "*");
spacer.line(6, "+");

> **********
> ++++++

■ wrap returns text padded to a given length with added prefix and suffix characters.

spacer.wrap("Saturn", 10, "=");
spacer.wrap("Venus", 12, "-");
spacer.wrap("Mercury", 14, "+");

> = Saturn =
> - Venus -
> + Mercury +

■ box returns text padded to a given length, with a line of characters above and
below.

spacer.box("Saturn", 10, "=");
spacer.box("Venus", 12, "-");

==========
= Saturn =
==========

- Venus -

“So, are strings objects now?”
In listing 7.7, the string "Jupiter" is assigned to the planet variable. The toUpper-
Case method is then called: planet.toUpperCase();.

If methods are functions set as properties of objects, how is it we can call methods
on strings?

Well, behind the scenes, whenever we access a string value, JavaScript creates a
special String object that wraps the value. That object includes all the handy string
methods. Once the statement has finished executing, the object is destroyed.

So, no, strings are not objects, but JavaScript provides a useful way to give us prop-
erties and methods for working with them.

97Methods—setting functions as properties of objects
The following listing shows the code for your new methods. Notice that spacer.wrap
uses spacer.line to pad the text with space characters and spacer.box uses both
spacer.line and spacer.wrap to generate its box outline. You’ll look in detail at how
the new methods work after the listing.

var spacer = {
 blank: function () {
 return "";
 },

 newLine: function () {
 return "\n";
 },

 line: function (length, character) {
 var longString =
 "**";
 longString += "--";
 longString += "==";
 longString += "++";
 longString += " ";

 length = Math.max(0, length);
 length = Math.min(40, length);
 return longString.substr(longString.indexOf(character), length);
 },

 wrap : function (text, length, character) {
 var padLength = length - text.length - 3;
 var wrapText = character + " " + text;
 wrapText += spacer.line(padLength, " ");
 wrapText += character;
 return wrapText;
 },

 box: function (text, length, character) {
 var boxText = spacer.newLine();
 boxText += spacer.line(length, character) + spacer.newLine();
 boxText += spacer.wrap(text, length, character) + spacer.newLine();
 boxText += spacer.line(length, character) + spacer.newLine();
 return boxText;
 }
};

console.log(spacer.box("Mercury", 11, "="));
console.log(spacer.box("Mars", 11, "*"));

TIP Notice how the wrap and box methods use the same parameters in the
same order: text, length, and character. The line method has only two of
those three parameters but is also consistent with the ordering: length and
character. Such a conscious choice of parameter order reduces the chance
of errors when calling the methods.

Listing 7.10 Organizing functions as object properties
(http://jsbin.com/kayono/edit?js,console)

Return an
empty string

Return a new
line character

Return a line of
characters of a
given length

Pad the text with
spaces and add a prefix
and suffix character

Surround the text in a box
of a specified character

Test the box
method

http://jsbin.com/kayono/edit?js,console

98 CHAPTER 7 Object arguments: functions working with objects
7.3.5 Deep namespace exploration

So how do your wonderful new methods work? Be brave and curious as you indulge
in some deep namespace exploration. And remember, you can try code out on JS
Bin, both in the JavaScript panel and at the prompt. For example, for the line
method explanation that follows, declare and assign the longString variable at the
console prompt:

> var longString = "**********----------==========++++++++++ "

Then you can try out the indexOf method:

> longString.indexOf("*")
 0
> longString.indexOf("=")
 20

Be playful and take your time. But don’t worry if you don’t follow everything the first
time; the methods use a lot of ideas you’ve only just met. Stick with it; learning fol-
lows thinking.

THE LINE METHOD

Both the wrap and box methods use the trusty line method. It returns a string of a
given length made up of one of five repeated characters:

line: function (length, character) {
 var longString = "**";
 longString += "--";
 longString += "==";
 longString += "++";
 longString += " ";

 length = Math.max(0, length);
 length = Math.min(40, length);
 return longString.substr(longString.indexOf(character), length);
 },

The method starts by creating one long string made up of all of the characters to be
made available. It uses the += operator to append new strings to an existing string.
The variable longString ends up as a string of the following form:

longString = "**********----------==========++++++++++ ";

This snippet has 10 of each character, whereas the actual method has 40 of each. The
code uses the string method indexOf to find the position of the first character that
matches the one specified when you call line. Here’s an example, using the shorter
snippet shown previously:

longString.indexOf("*"); // 0
longString.indexOf("-"); // 10

99Methods—setting functions as properties of objects
longString.indexOf("="); // 20
longString.indexOf("+"); // 30
longString.indexOf(" "); // 40

Having found where the requested character first appears, the code then uses substr
to grab a substring of the specified length:

longString.substr(10, 6); // ------
longString.substr(30, 3); // +++

But the line method doesn’t use hard-coded values; it uses parameters, length and
character, to hold the arguments passed in when you call it:

// Get the index of the first matching character
var firstChar = longString.indexOf(character);

// Get a string of the requested length, starting at the first matching
// character
var requestedLine = longString.substr(firstChar, length);

The extra variables aren’t really needed, although they could be used to make the
method easier to follow. line finds the substring and returns it in one go:

return longString.substr(longString.indexOf(character), length);

Notice that a space is one of the available characters. Strings of spaces can be used to
pad titles and boxes on the console. The wrap method uses line to do just that.

THE WRAP METHOD

To form the middle line of some boxed text, the wrap method returns a string of a
specified length. The character argument specifies the first and last characters of
the string:

 wrap : function (text, length, character) {
 var padLength = length - text.length - 3;
 var wrapText = character + " " + text;
 wrapText += spacer.line(padLength, " ");
 wrapText += character;
 return wrapText;
 },

Here are some strings of increasing length returned by wrap:

spacer.wrap("Neptune", 11, "="); // = Neptune =
spacer.wrap("Neptune", 12, "="); // = Neptune =
spacer.wrap("Neptune", 13, "="); // = Neptune =

The method pads the last character with spaces on its left to make the whole string the
correct length (figure 7.8).

100 CHAPTER 7 Object arguments: functions working with objects
To find the length of the padding, start with the desired length of the whole string
and subtract the length of the text you’re wrapping and then three more to account
for the first character, the leading space, and the last character:

var padLength = length – text.length – 3;

JavaScript makes the length property available on all strings:

var text = "Neptune";
text.length; // 7

Having calculated the required length of the padding, wrap then enlists the help of
the line method to grab a string of spaces of that length:

spacer.line(padLength, " ");

The wrap method builds the string to be returned by concatenating all the pieces:
character, space, text, padding, character.

THE BOX METHOD

And finally, the box method uses line and wrap to surround a string in a box of a
specified length:

spacer.line(11, "*"); // ***********
spacer.wrap("Neptune", 11, "*"); // * Neptune *
spacer.line(11, "*"); // ***********

The method uses newLine so that the single returned string can span multiple lines on
the console:

 box: function (text, length, character) {
 var boxText = spacer.newLine();
 boxText += spacer.line(length, character) + spacer.newLine();
 boxText += spacer.wrap(text, length, character) + spacer.newLine();
 boxText += spacer.line(length, character) + spacer.newLine();
 return boxText;
 }

Excellent! The spacer namespace now has a number of useful methods to format the
display of information on the console. They’ll be really handy in The Crypt. So, let’s
mix them in!

= Neptune =

character

space

text

padding

character

Figure 7.8 The wrapped text is made up of
character + space + text + padding + character.

101The Crypt–player objects as arguments
7.4 The Crypt–player objects as arguments
You’ll now apply your knowledge of JavaScript objects as arguments, return values,
and namespaces to The Crypt. Figure 7.9 shows where the focus of this section, showing
player information by using functions with objects, fits into the overall structure of our
ongoing game example.

In chapter 6 you built up a number of functions to help display information about
players in the game. The functions rely on separate arguments for different player
properties. Here’s the getPlayerInfo function being called:

getPlayerInfo(player1.name, player1.place, player1.health);

You’ve seen in this chapter that you can simply pass a player object as an argument
and let the function pick out the properties it needs. The getPlayerInfo function call
should become

getPlayerInfo(player1);

Much neater!
 You can use the helper methods in your spacer namespace to format the text—

box and wrap will do the trick. But how can you find the right box length to snugly
wrap the information? The place string will probably be the longest, but might the
health string sometimes stretch farther?

> ==================================== > +++++++++++++++++++++
> = Kandra is in The Dungeon of Doom = > + Dax is in Limbo +
> = Kandra has health 50 = > + Dax has health 40 +
> ==================================== > +++++++++++++++++++++

player variables

Players

a player object

player items

Player Constructor

showing player info

Places

place objects

place items

showing place info

Place Constructor

place exits

using return values

using functions

using arguments

using objects

Maps

Game

linking places

render

get

go

Figure 7.9 Elements in The Crypt

102 CHAPTER 7 Object arguments: functions working with objects
You have to check which is the longest. The Math.max method has you covered:

var longest = Math.max(place.length, health.length);

Don’t forget the border and single space at either end:

var longest = Math.max(place.length, health.length) + 4;

The following listing uses the spacer namespace methods, so the live example includes
that code on JS Bin.

var getPlayerName = function (player) {
 return player.name;
};

var getPlayerHealth = function (player) {
 return player.name + " has health " + player.health;
};

var getPlayerPlace = function (player) {
 return player.name + " is in " + player.place;
};

var getPlayerInfo = function (player, character) {
 var place = getPlayerPlace(player);
 var health = getPlayerHealth(player);
 var longest = Math.max(place.length, health.length) + 4;

 var info = spacer.box(getPlayerName(player), longest, character);
 info += spacer.wrap(place, longest, character);
 info += spacer.newLine() + spacer.wrap(health, longest, character);
 info += spacer.newLine() + spacer.line(longest, character);
 info += spacer.newLine();

 return info;
};

var player1 = { name: "Kandra", place: "The Dungeon of Doom", health: 50 };
var player2 = { name: "Dax", place: "Limbo", health: 40 };

console.log(getPlayerInfo(player1, "="));
console.log(getPlayerInfo(player2, "+"));

7.5 Summary
■ Use objects as arguments and access their properties from within the func-

tion body:

var getPlayerHealth = function (player) {
 return player.name + " has health " + player.health;
};
getPlayerHealth(player1);

Listing 7.11 Displaying player information using objects
(http://jsbin.com/beqabe/edit?js,console)

Find the longer
of the place and
health strings

Specify the character to be used
when displaying player info

http://jsbin.com/beqabe/edit?js,console

103Summary
■ Update objects and add new properties from within the function body:

var calculateSizes = function (rectangle) {
 rectangle.area = rectangle.width * rectangle.height;
 rectangle.perimeter = 2 * (rectangle.width + rectangle.height);
};

■ Return new or existing objects from functions, using the return keyword:

var getRectangle = function (width, height) {
 return {
 width: width,
 height: height,
 area: width * height
 };
};

■ Create methods by setting functions as properties of objects.
■ Use objects as namespaces to collect related functions and properties:

var spacer = {};
spacer.newLine = function () {
 return "\n";
};

■ Make use of the Math object and its methods, like Math.max and Math.min.
■ Use the length property of strings and string methods like indexOf and substr.

Arrays:
putting data into lists
Almost everything you’ve covered so far has been about organizing your data or
organizing your code. This chapter continues that theme but with a twist: it’s not
just about grouping items; now you can put them in order.

 In The Crypt, you’ll finally have the ability for players to collect items they find
on the journey; with arrays they can start on their very own treasure hoards.

8.1 Creating arrays and accessing elements
Working with lists is an essential part of programming. Blog posts, quiz questions,
stock prices, emails, files, tweets, and bank transactions all turn up as lists. In
fact, you’ve just read a list of lists! Sometimes the order doesn’t matter and
sometimes it does. A list of names could represent the members of a team, with
no order, or it could represent places in a race—I’m sure Usain Bolt thinks the

This chapter covers
■ Grouping values as lists
■ Creating an array
■ Accessing elements in an array
■ Manipulating the elements in an array
■ Using forEach to visit each element
104

105Creating arrays and accessing elements
order is important there! An ordered list is called an array in JavaScript, as it is in
many programming languages.

 The items in an array are called its elements and you usually want to work on the ele-
ments in some way. You might want to

■ Perform some action with each element, say display it on the console or
increase it by 20%

■ Find only certain elements that match a condition, say all tweets by Lady Gaga,
blog posts in a given month, or questions answered correctly

■ Combine all the elements into a single value, say to find the total of a list of
prices or the average number of points scored per game

The array object in JavaScript provides functions to help you perform all of these
actions and more. But, we’re getting ahead of ourselves. Let’s go back to the start and
find out how to create an array.

8.1.1 Creating an array

To create an array, use square brackets. Once it’s created, you can assign the array to a
variable so you can refer to it in your code. Figure 8.1 illustrates the process.

The following listing creates two arrays and displays them on the console to give this
output:

> [3, 1, 8, 2]
> ["Kandra", "Dax", "Blinky"]

var scores;
var names;

scores = [3, 1, 8, 2];
names = ["Kandra", "Dax", "Blinky"];

console.log(scores);
console.log(names);

Listing 8.1 Creating arrays
(http://jsbin.com/cevodu/edit?js,console)

["Kandra" , "Blinky" , true , 50]

Start of array
definition

Commas separate
values

End of array
definition

Values can be of any type

Figure 8.1 Use square brackets
to create an array

Create an array of
numbers and assign it
to the scores variable

Create an array of
strings and assign it
to the names variable

http://jsbin.com/cevodu/edit?js,console

106 CHAPTER 8 Arrays: putting data into lists
Commas separate the elements, which can be numbers, strings, objects, functions, or
any data type or mix of types—you can even have arrays of arrays. Like the curly braces
for objects and the function keyword for functions, the square brackets tell JavaScript
to create an array. Once it’s created, you can assign the array to a variable, set it as a
property, include it in another array, or pass it to a function.

 Listing 8.2 creates a couple of arrays of objects representing places to visit, this-
Year and nextYear. Figure 8.2 shows how JS Bin displays the arrays of objects.

var place1 = { name : "The Pyramids", country : "Egypt" };
var place2 = { name : "The Grand Canyon", country : "USA" };
var place3 = { name : "Bondi Beach", country : "Australia" };

var thisYear = [place1, place2];
var nextYear = [place3];

console.log(thisYear);
console.log(nextYear);

8.1.2 Accessing array elements

You’ve created an array and assigned it to a variable, so now you can pass that variable
to functions, like console.log. At some point you’ll want to access the elements that
make up the array, to peel away the skin to get at the juicy goodness inside. Well, those
square brackets do double duty; they enclose the list when you define the array, and
you use them to access individual elements.

 As shown in figure 8.3, you specify each element with an index, a whole number
marking where in the list the element occurs. The first element in an array has an

Listing 8.2 Using existing objects in an array
(http://jsbin.com/gizulu/edit?js,console)

Figure 8.2 JS Bin displays each of the two arrays in listing 8.2 between square brackets.

Create an array
of objects and
assign it to the
thisYear variable

Use zero or more
elements in an array

http://jsbin.com/gizulu/edit?js,console

107Creating arrays and accessing elements
index of 0, the second an index of 1, and so on. You can think of the index as an offset
from the start of the array; the first element is zero away from the start, the second is
one away from the start, and so on.

 To retrieve the value of an element at a given index, put the index inside square
brackets after the name of a variable to which the array has been assigned, as shown in
figure 8.4.

Here, you create an array and assign it to a variable:

var scores;
scores = [3, 1, 8, 2];

To get the value of the third item in the array, 8, place the index, 2 (because you start
with 0), in square brackets after the name of the variable:

scores[2];

You can assign scores[2] to another variable, set it as a property on an object, use it
in an expression, or pass it as an argument to a function. Listing 8.3 creates strings
using the values of elements in the scores array and displays them on the console to
give the following:

> There are 4 scores:
> The first score is 3
> The second score is 1
> The third score is 8
> The fourth score is 2

It also makes use of the array’s length property that simply gives the number of ele-
ments in the array.

["Kandra" , "Blinky" , true , 50]

index 0 index 1 index 2 index 3

Figure 8.3 Each element of an array
has an index, starting at 0.

items = ["Kandra" , "Blinky" , true , 50];

items[0] items[1] items[2] items[3]
Figure 8.4 Use square
brackets and an index to
access elements of an
array assigned to a
variable

108 CHAPTER 8 Arrays: putting data into lists
var scores = [3, 1, 8, 2];

console.log("There are " + scores.length + " scores:");
console.log("The first score is " + scores[0]);
console.log("The second score is " + scores[1]);
console.log("The third score is " + scores[2]);
console.log("The fourth score is " + scores[3]);

Now, say you have a days array, holding the names of the weekdays, and you want to
get the name of a particular day in the week, maybe the fourth day.

var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];

There’s a mismatch between the index in JavaScript and the words used to describe a
particular element. The first day of the week has index 0. The fourth day of the week
has index 3. You might want to access a different day at different times, so you could
use a variable, dayInWeek, to hold the day in the week you want.

// I want the fourth day of the week
dayInWeek = 4;

But using dayInWeek as the index for the array will give you the wrong day. An index
of 4 will give you the fifth day in the week.

 The next listing shows code for this scenario. It displays two days on the console:
the wrong one (that is, not the fourth day of the week) and then the right one:

> Friday
> Thursday

var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
var dayInWeek = 4;

console.log(days[dayInWeek]);
console.log(days[dayInWeek - 1]);

The first call to console.log displays the wrong day because the dayInWeek variable
doesn’t take into account that arrays are zero-based; they start with an index of 0,

Listing 8.3 Accessing array elements
(http://jsbin.com/qemufe/edit?js,console)

Listing 8.4 Using a variable as an index
(http://jsbin.com/veyexa/edit?js,console)

Use the length property
to show how many
elements are in the array

The first element in
the array has an
index of 0.

The last element in the array
has an index one less than the
number of elements.

Use the value of the dayinWeek
variable as an index

Subtract 1 from dayInWeek to
access the correct element for
the day wanted

http://jsbin.com/qemufe/edit?js,console
http://jsbin.com/veyexa/edit?js,console

109Creating arrays and accessing elements
not 1. The second call to console.log fixes the problem by subtracting one from
dayInWeek; the fourth day of the week has an index of 3.

 Okay. It’s time to hold onto your hat. In listing 8.5 you’ll define a function and add
it to the mix. The local pencil museum records the number of visitors through its
doors each day. The owners ask you to create a program that, when given a week’s
worth of visitor numbers as an array, will display how many visitors there were on a
given day:

> There were 132 visitors on Tuesday

You decide to write a function, getVisitorReport, to generate the report and return
it. You then would have the option of displaying the report on the console, on a web
page, or in an email. In the next listing you generate a report for a Tuesday and dis-
play it on the console.

var getVisitorReport = function (visitorArray, dayInWeek) {
 var days = [
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday"
];
 var index = dayInWeek - 1;
 var visitorReport;

 visitorReport = "There were ";
 visitorReport += visitorArray[index];
 visitorReport += " visitors ";
 visitorReport += "on " + days[index];

 return visitorReport;
};

var visitors = [354, 132, 210, 221, 481];

var report = getVisitorReport(visitors, 2);

console.log(report);

You create an array of visitor numbers, assign it to the visitors variable, and pass it to
the getVisitorReport function as an argument. Within the function, the array is
assigned to the visitorArray variable and used to generate the report. The report is
returned from the function, assigned to the report variable, and displayed on the
console. The += operator in the function adds the value on its right to the variable on

Listing 8.5 Passing an array to a function
(http://jsbin.com/bewebi/edit?js,console

 Include parameters for an
array of visitor numbers and
the day in week of the report

Use the += operator to update
visitorReport, concatenating more
text to its current value

Return the report
from the function

Get the report for
Tuesday and assign it to
the report variable

http://jsbin.com/bewebi/edit?js,console

110 CHAPTER 8 Arrays: putting data into lists
its left. Because a string has been assigned to the visitorReport variable, += concate-
nates the value on its right to the variable on its left.

 So, you can create an array and access its elements. But, once you have data in an
array, there’s a whole host of ways you can manipulate it. Let’s get started with a few of
the most common ways to work with arrays.

8.2 Array methods
Arrays are a type of object provided by the JavaScript language to help you manage
lists. JavaScript also provides you with a number of functions you can use to work
with arrays. When we assign functions to properties of an object, we call the func-
tions methods of the object; arrays are a type of object, so their functions are also
called methods.

 In this section you look at just a few of the many methods available when working
with arrays: push and pop and splice let you add and remove elements, slice lets
you grab consecutive elements, join lets you concatenate the array elements to
form a string, and forEach allows you to pass each element as an argument to a
specified function. These methods are summarized in table 8.1. Further array meth-
ods and examples can be found on the book’s website at www.room51.co.uk/js/
array-methods.html.

Let’s begin with push, pop, and join.

Table 8.1 Array methods

Method What’s it for? Example

push Appending an element to the end of an
array.

items.push("Put me last");

pop Removing an item from the end of an array. wasLast = items.pop();

join Concatenating all of the elements in the
array, inserting an optional string between
each pair of elements.

allItems = items.join(",");

slice Creating an array from a range of elements
in an existing array. Passing in the indexes
at which to start and stop the range.

section = items.slice(2, 5);

splice Changing an array by adding and/or remov-
ing consecutive elements. Passing in the
index at which to start removing elements,
the number of elements to remove, and
any elements to add.

out = items.splice(1,2,"new");

forEach Passing each element in turn to a speci-
fied function.

items.forEach(function (item){
 console.log(item);
}

http://www.room51.co.uk/js/array-methods.html
http://www.room51.co.uk/js/array-methods.html

111Array methods
8.2.1 Adding and removing elements

In listing 8.6, you create an empty array and assign it to the items variable. The push
method is used to append three elements to the array. Once you’ve added the three
elements, you log the whole array to the console:

> ["The Pyramids", "The Grand Canyon", "Bondi Beach"]

You then use the pop method to remove the last item and display it. Finally, you log
the whole array to the console again, this time with the elements joined to make a sin-
gle string.

> Bondi Beach was removed
> The Pyramids and The Grand Canyon

var items = [];
var item = "The Pyramids";
var removed;

items.push(item);
items.push("The Grand Canyon");
items.push("Bondi Beach");

console.log(items);

removed = items.pop();

console.log(removed + " was removed");
console.log(items.join(" and "));

JavaScript makes the push, pop, and join functions available as properties on every
array. Because they’re properties of the array, you can use dot notation to call the
functions, items.push(itemToAdd), just as you can to access any object property.

8.2.2 Slicing and splicing arrays

To demonstrate the two array methods, slice and splice, you continue with your
array of holiday destinations. Play along on the JS Bin console. Commands can span
multiple lines on the console; press Shift-Enter to move to a new line without execut-
ing a statement. If you press Enter by mistake and execute an unfinished statement,
you may be able to retrieve your previous entry by pressing the up arrow on your key-
board. The statements that you type are shown starting with >. The console automati-
cally shows the return value of each function called. I show those values in bold.

Listing 8.6 Manipulating arrays with push, pop, and join
(http://jsbin.com/faqabu/edit?js,console)

Create an empty array and
assign it to the items variable

Add the value of item to
the end of the array

Add a string to the
end of the array

Remove the last item and assign
it to the removed variable

Use the join method to concatenate
the array items, inserting " and "
between each pair

http://jsbin.com/faqabu/edit?js,console

112 CHAPTER 8 Arrays: putting data into lists
> var items = [
 "The Pyramids",
 "The Grand Canyon",
 "Bondi Beach",
 "Lake Garda"]
 undefined

> items
 ["The Pyramids", "The Grand Canyon", "Bondi Beach", "Lake Garda"]

SLICE

The slice method returns a new array made up of part of the original array. It doesn’t
change the original array. The arguments are the index of the first element you want
and the index of the first subsequent element you don’t want. Remember, the first ele-
ment has index 0.

> items.slice(0, 2)
 ["The Pyramids", "The Grand Canyon"]

> items.slice(2, 3)
 ["Bondi Beach"]

items.slice(2, 3) says you want the items from index 2 onward but not the items
from index 3 onward. In other words, you just want the item with index 2.

 Omit the second argument if you want all elements after the one specified by the
first argument. Omit both arguments if you want the whole array.

> items.slice(2)
 ["Bondi Beach", "Lake Garda"]

> items.slice()
 ["The Pyramids", "The Grand Canyon", "Bondi Beach", "Lake Garda"]

SPLICE

The splice method does change the original array. It lets you remove items from an
array and, optionally, insert new items. To remove items, specify the index of the first
element to remove and the number of elements to remove. The method returns the
removed elements as an array.

> items.splice(2, 1)
 ["Bondi Beach"]

> items
 ["The Pyramids", "The Grand Canyon", "Lake Garda"]

> items.splice(0, 2)
 ["The Pyramids", "The Grand Canyon"]

> items
 ["Lake Garda"]

113Array methods
To insert new elements into the array, add them as arguments after the start index and
the number of items to remove. In this example, no items are removed:

> items.splice(0, 0, "The Great Wall", "St Basil’s")
 []

> items
 ["The Great Wall", "St Basil’s", "Lake Garda"]

In this example, one item is removed:

> items.splice(1, 1, "Bondi Beach", "The Grand Canyon")
 ["St Basil’s"]

> items
 ["The Great Wall", "Bondi Beach", "The Grand Canyon", "Lake Garda"]

You’ll use both slice and splice when working with player and place items in
The Crypt.

8.2.3 Visiting each element with forEach

If you have a list of items that you want to display on the console, you could manually
call a function for each one:

showInfo(items[0]);
showInfo(items[1]);
showInfo(items[2]);

Unfortunately, it’s common not to know in advance how many items will be in the list,
so you can’t hard-code the right number of showInfo calls ahead of time. Also, as the
number of elements increases, you don’t want to be manually calling a function for
each one.

 What you need is a way to make JavaScript call a given function for every element
in the list, however many there are. That’s exactly what the forEach method does. To
call showInfo for each element in the items array, replace the individual calls with

items.forEach(showInfo);

The forEach method iterates over the array, passing each element in turn as an argu-
ment to the function specified in parentheses, as shown in figure 8.5.

 Listing 8.7 shows forEach in action, displaying the elements of an items array on
the console:

> The Pyramids
> The Grand Canyon
> Bondi Beach

114 CHAPTER 8 Arrays: putting data into lists
var items;
var showInfo;

items = [
 "The Pyramids",
 "The Grand Canyon",
 "Bondi Beach"
];

showInfo = function (itemToShow) {
 console.log(itemToShow);
};

items.forEach(showInfo);

In listing 8.7, your function to display each item was assigned to the showInfo variable.
You then passed the showInfo variable to forEach as an argument.

 If you’re going to use a function only once, as the argument for forEach, you can
create the function and pass it to forEach inline, without the need for an extra vari-
able. The code in listing 8.8 passes the function definition directly to forEach. You
also add extra information to set the scene and improve the output:

> Dream destinations:
> - The Pyramids
> - The Grand Canyon
> - Bondi Beach

Listing 8.7 Iterating over an array with forEach
(http://jsbin.com/sokosi/edit?js,console)

items.forEach(showInfo);

[
 "The Pyramids" ,

 "The Grand Canyon",

 "Bondi Beach"
];

showInfo("The Pyramids")

showInfo("Bondi Beach")

showInfo("The Grand Canyon")

[
 "The Pyramids",

 "The Grand Canyon" ,

 "Bondi Beach"
];

[
 "The Pyramids",

 "The Grand Canyon",

 "Bondi Beach"
];

Figure 8.5 items.forEach passes each item in the items array to the showInfo function.

Use the var keyword to
declare two variables

Use square brackets to
create an array. Assign the
array to the items variable.

Use the function keyword to
create a function. Assign it to
the showInfo variable.

Call the showInfo function for
each element in the array

http://jsbin.com/sokosi/edit?js,console

115Array methods
var items = ["The Pyramids", "The Grand Canyon", "Bondi Beach"];

console.log("Dream destinations:");

items.forEach(function (item) {
 console.log(" – " + item);
});

The forEach method actually passes three arguments to the specified function: the
element, the index of the current element, and the whole array. You can capture
the extra arguments by including extra parameters in the definition of the function
you pass to forEach.

items.forEach(function (item, index, wholeArray) {
 // item is the current item being passed to the function
 // index is the index of the current item
 // wholeArray is the same as 'items'
});

Listing 8.9 shows all three arguments in action. It uses forEach to pass each player in
the players array to the showArguments function, producing the following output:

> Item: Dax
> Index: 0
> Array: Dax,Jahver,Kandra
> Item: Jahver
> Index: 1
> Array: Dax,Jahver,Kandra
> Item: Kandra
> Index: 2
> Array: Dax,Jahver,Kandra

var players;
var showArguments;

players = ["Dax", "Jahver", "Kandra"];

showArguments = function (item, index, wholeArray) {
 console.log("Item: " + item);
 console.log("Index: " + index);
 console.log("Array: " + wholeArray);
};

players.forEach(showArguments);

Listing 8.8 Calling forEach with an inline function
(http://jsbin.com/yapecu/edit?js,console)

Listing 8.9 Using the arguments passed by forEach
(http://jsbin.com/suvegi/edit?js,console)

Use the forEach method,
passing it an inline function

Include extra
parameters to capture
all the arguments
passed by forEach

http://jsbin.com/yapecu/edit?js,console
http://jsbin.com/suvegi/edit?js,console

116 CHAPTER 8 Arrays: putting data into lists
The forEach method does the job of calling a function for you. In listing 8.9, it calls
the showArguments function. It calls the function for each element in the players
array. It always passes the three arguments to the function it calls, although you don’t
have to use all three.

 You can call array methods like forEach directly on arrays without the need for
variables. Listing 8.10 rewrites listing 8.9 without assigning the array or the function
to variables.

["Dax", "Jahver", "Kandra"].forEach(function (item, index, wholeArray) {
 console.log("Item: " + item);
 console.log("Index: " + index);
 console.log("Array: " + wholeArray);
});

If you’re using the array and function only once, the compact syntax in listing 8.10
can be appropriate. But the longer form in listing 8.9 is more readable, so if the mean-
ing of the code isn’t obvious in context, it might be better to opt for the longer ver-
sion. Being able to write something like

players.forEach(showScore);

can help you and other programmers make better sense of your code.
 To further demonstrate using the index argument, you’re off to the shops in list-

ing 8.11. (If you have your adventure head on, then maybe you’re buying equipment
for your travels.) You buy four types of items but different amounts of each. The pro-
gram calculates the total cost and displays it, like this:

> The total cost is $41.17

It uses two arrays, one for the numbers of each item bought and one for their costs.

var getTotalBill = function (itemCosts, itemCounts) {
 var total = 0;

 itemCosts.forEach(function (cost, i) {
 total += cost * itemCounts[i];
 });

 return total;
};

var costs = [1.99, 4.95, 2.50, 9.87];
var numOfEach = [2, 1, 5, 2];

console.log("The total cost is $" + getTotalBill(costs, numOfEach));

Listing 8.10 Using the arguments passed by forEach—compact
(http://jsbin.com/pagahe/edit?js,console)

Listing 8.11 Finding the total shopping bill
(http://jsbin.com/zizixu/edit?js,console)

Include an extra parameter,
i, in the function definition
to be assigned the index

Use the += operator to add
the result of the calculation
to the total variable’s value

http://jsbin.com/pagahe/edit?js,console
http://jsbin.com/zizixu/edit?js,console

117Array methods
Listing 8.11 uses the index to match the current item cost with the correct number of
items. For this to work, the arrays have to be in the same order. I hope you noticed
that i isn’t a very descriptive variable name! It is so common to need index variables
that most programmers are happy to use short names—i, j, and k—for them. They’re
quicker to type and it’s such a well-established convention that most people reading
your code will expect them to be used as a counter or index. If you’d rather call the
variable index or itemIndex or something similar, that’s fine.

 As one last example, let’s return to your quiz questions. A multiple-choice question
has a list of possible answers that need to be displayed to whomever is taking the quiz.
Sounds like a good fit for an array and forEach; see listing 8.12. You could even have
an array of question-and-answer objects. For now, stick with a single question, dis-
played like this:

> What is the capital of France?
> A – Bordeaux
> B – F
> C – Paris
> D - Brussels

var displayQuestion = function (questionAndAnswer) {
 var options = ["A", "B", "C", "D", "E"];

 console.log(questionAndAnswer.question);

 questionAndAnswer.answers.forEach(
 function (answer, i) {
 console.log(options[i] + " - " + answer);
 }
);
};

var question1 = {
 question : "What is the capital of France?",
 answers : [
 "Bordeaux",
 "F",
 "Paris",
 "Brussels"
],
 correctAnswer : "Paris"
};

displayQuestion(question1);

You’ll look at actually answering questions when you investigate user interaction in
part 2.

Listing 8.12 Displaying a multiple choice question
(http://jsbin.com/lobahu/edit?js,console)

Include a parameter
to which the question-
and-answer object can
be assigned

Access properties of
the question-and-
answer object via
the parameter

Use forEach to visit
each element of the
array assigned to the
answers property

Assign an array
to the answers
property

http://jsbin.com/lobahu/edit?js,console

118 CHAPTER 8 Arrays: putting data into lists
8.3 The Crypt—a player items array
You’ll now apply your knowledge of JavaScript arrays to The Crypt. Figure 8.6 shows
where the focus of this section, displaying a list of player items by using arrays, fits into
the overall structure of our ongoing game example.

In part 1 of Get Programming with JavaScript, we’ve covered some core concepts to help
you model and use players in The Crypt. You have variables to store and retrieve player
information, objects to collect player properties together, arrays so you can list the
items a player collects, array methods to add and remove items in the collection, and
functions to display information about each player.

 Listing 8.13 brings all of these concepts together: creating a player, displaying
information about them, picking up a new item, and displaying the updated info. You
format the output using the spacer namespace developed in chapter 7. The elements
that make up the output are highlighted in figure 8.7.

player variables

Players

a player object

showing player info

player items

Player Constructor

Places Maps

place objects

place items

place exits

Place Constructor

showing place info

linking places via exits

Game

render

get

go

Figure 8.6 Elements of The Crypt

* Kandra *

* Kandra is in The Dungeon of Doom *
* Kandra has health 50 *

 Items:
 - a trusty lamp
 - a rusty key

A box around the player’s name

Player name

Place info

A list of items

Player health

Borders

Figure 8.7 The elements shown when a Player object is displayed on the console

119The Crypt—a player items array
To save space, spacer isn’t shown in the listing (it hasn’t changed) but it is on JS Bin.
The code in this listing builds on the player display code from chapter 7, adding the
ability to list a player’s items.

var getPlayerName = function (player) {
 return player.name;
};

var getPlayerHealth = function (player) {
 return player.name + " has health " + player.health;
};

var getPlayerPlace = function (player) {
 return player.name + " is in " + player.place;
};

var getPlayerItems = function (player) {
 var itemsString = "Items:" + spacer.newLine();

 player.items.forEach(function (item) {
 itemsString += " - " + item + spacer.newLine();
 });

 return itemsString;
};

var getPlayerInfo = function (player, character) {
 var place = getPlayerPlace(player);
 var health = getPlayerHealth(player);
 var longest = Math.max(place.length, health.length) + 4;

 var info = spacer.box(getPlayerName(player), longest, character);
 info += spacer.wrap(place, longest, character);
 info += spacer.newLine() + spacer.wrap(health, longest, character);
 info += spacer.newLine() + spacer.line(longest, character);

 info += spacer.newLine();
 info += " " + getPlayerItems(player);
 info += spacer.newLine();
 info += spacer.line(longest, character);

 info += spacer.newLine();

 return info;
};

var showPlayerInfo = function (player, character) {
 console.log(getPlayerInfo(player, character));
};

var player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50,
 items : ["a trusty lamp"]
};

Listing 8.13 Displaying player items
(http://jsbin.com/mecude/edit?js,console)

Define a function to
build a string for the
display of player items

Use forEach to append
each element of the
items array to the
string

Call getPlayerItems to
include the items string
in the player info

Create a showPlayerInfo
function to display the info
string on the console

Give the player
an item

http://jsbin.com/mecude/edit?js,console

120 CHAPTER 8 Arrays: putting data into lists
showPlayerInfo(player1, "=");

player1.items.push("a rusty key");

showPlayerInfo(player1, "*");

The Player object now includes an items array:

var player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50,
 items: ["a trusty lamp"]
};

It starts with only one element, but you add another by using the push array method:

player1.items.push("a rusty key");

getPlayerItems uses forEach to pass each item in the items array to a function.
The function appends the item to a string using +=, building a list of all of the
player’s items:

player.items.forEach(function (item) {
 itemString += " - " + item + spacer.newLine();
});

The showPlayerInfo function calls getPlayerInfo to retrieve the player information
string and then displays the information on the console.

 You’re starting to build up quite a collection of functions to help with the display
of players; you should really organize them. You could collect them into a name-
space or, seeing as they all relate to players, include them as part of each Player
object. JavaScript provides a way to streamline the creation of many similar objects,
incorporating the methods that work with them: constructor functions. That’s what
you investigate in chapter 9, where you also build the places the players will explore
in The Crypt.

8.4 Summary
■ Create an array with a comma-separated list of values between square brackets:

["Kandra", "Dax", true, 50]

■ Assign the array to a variable and then access its elements by adding an index in
square brackets to the variable name. The following code displays "Dax":

var items = ["Kandra", "Dax", true, 50]
console.log(items[1]);

Call showPlayerInfo, passing the
player and a border character

Use push to add an extra
item to the items array

121Summary
■ Remember to use a zero-based index for array elements. items[1] refers to the
second element in the items array. You can think of the index as an offset from
the start of the array: the first element is zero away from the start, the second is
one away from the start, and so on.

■ Use array methods, functions provided by JavaScript, to add, remove, join, and
iterate over array elements. The methods covered in this chapter are push, pop,
join, slice, splice, and forEach.

Constructors: building
objects with functions
It’s common for programs to create many similar objects—a blog post could have
hundreds of posts and a calendar thousands of events—and to include functions
for working on those objects. Rather than building each object by hand using curly
braces, you can use functions to streamline the process. You want to change

planet1 = {
 name: "Jupiter",
 position: 8,
 type: "Gas Giant"
};

This chapter covers
■ Using functions to create objects
■ The keyword new
■ Using constructor functions to create objects
■ The special variable this
■ Defining constructor functions for players

and places
122

123Using functions to build objects
showPlanet = function (planet) {
 var info = planet.name + ": planet " + planet.position;
 info += " - " + planet.type;
 console.log(info);
};

showPlanet(planet1);

into

planet1 = buildPlanet("Jupiter", 8, "Gas Giant");
planet1.show();

where the buildPlanet function creates the planet object for you and adds the show
method automatically. You define a blueprint for your object in the function body of
buildPlanet and then use that blueprint to generate new objects whenever you
need them. That keeps your object-creation code in one place; you’ve seen through-
out the book how such organization makes it easier to understand, maintain, and
use your programs.

 You can do even better than a simple function to create many similar objects; you
can use a constructor function. Writing functions to generate objects is so common that
JavaScript includes a built-in way of streamlining the process. With a constructor func-
tion, creating and displaying a planet looks like this:

planet1 = new Planet("Jupiter", 8, "Gas Giant");
planet1.show();

Constructor functions standardize object creation—standardizing code is generally a
good thing—and provide a way of identifying objects, making it easier to differentiate
among planets, players, posts, and positions, for example. They also provide a way of
sharing a single function among many objects by using prototypes, covered in part 4.

 In section 9.1 you write your own functions to make it easier to build objects with
properties and methods in place. In section 9.2, you investigate constructor functions
and see how they simplify the process. It’s time to get the production line rolling.

9.1 Using functions to build objects
Rather than using curly braces to manually construct each object, create a function to
do the heavy lifting. Just pass the function the information it needs and it will return a
shiny new object for you. In larger programs, you may well want to create similar
objects in a number of places in the code. Having a single function you can call on
saves you from repeating yourself and makes it easy to make changes if what you need
your object to do develops over time.

 Section 9.1.1 shows a simple object-creation function, and section 9.1.2 builds on it
to add a method to your created objects.

124 CHAPTER 9 Constructors: building objects with functions
9.1.1 Adding properties

Figure 9.1 shows a buildPlanet function to help you create each planet object. You
pass the function the planet data as arguments and it returns an object with those
arguments set as properties. You’ve only just started learning JavaScript and you’re
already building planets!

 The first listing shows the code for the buildPlanet function. Notice how it starts
by creating an object and ends by returning the object.

var buildPlanet = function (name, position, type) {
 var planet = {};

 planet.name = name;
 planet.position = position;
 planet.type = type;

Listing 9.1 Using a function to create an object
(http://jsbin.com/jiroyo/edit?js,console)

function (name , position , type)name position type

planet1 = buildPlanet("Jupiter", 5 , "Gas Giant");"Jupiter" 5 "Gas Giant"

planet1 = {
 name: "Jupiter",
 position: 5,
 type: "Gas Giant"
};

The return value
replaces the
function call

var planet = {};

planet.name = name ;

planet.position = position ;

planet.type = type ;

name

position

type

5

"Gas Giant"

planet.name = name ;

planet.position = ;

planet.type = ;

"Jupiter"

return planet;

1. Create an empty object

2. Assign the arguments

to properties

3. Return the object

Equivalent to

Figure 9.1 The buildPlanet function creates and returns an object.

Create an empty object
for the new planet being
constructed

Set properties on the planet object
using the arguments passed in

http://jsbin.com/jiroyo/edit?js,console

125Using functions to build objects
 return planet;
};

var planet1 = buildPlanet(
 "Jupiter",
 5,
 "Gas Giant"
);

console.log(planet1.name);
console.log(planet1.position);
console.log(planet1.type);

The steps the buildPlanet function takes are important for understanding how
JavaScript’s constructor functions streamline the process of object creation. You take a
look at constructor functions in section 9.2. But first, you enhance what your created
objects can do, with methods.

9.1.2 Adding methods

As well as setting some initial properties, you can make buildPlanet add methods
into the mix. Remember, a method is a just function you assign to an object property.
Rather than defining an external function to display information about each planet
object, bake it into the object itself.

 In the next listing, you add a showPlanet method to each planet object before
returning the object. The output looks like this:

> Jupiter: planet 5 - Gas Giant

var buildPlanet = function (name, position, type) {
 var planet = {};

 planet.name = name;
 planet.position = position;
 planet.type = type;

 planet.showPlanet = function () {
 var info = planet.name;
 info += ": planet " + planet.position;
 info += " - " + planet.type;
 console.log(info);
 };

 return planet;
};

Listing 9.2 Adding methods to your constructed object
(http://jsbin.com/zogure/edit?js,console)

Return the new planet
object you’ve created

Call the buildPlanet function and assign the
object returned to the planet1 variable

Create an empty object for the
new planet being constructed

Set properties on the planet object
using the arguments passed in

Define a display function
and assign it to the
showPlanet property

Return the new planet
object you have created

http://jsbin.com/zogure/edit?js,console

126 CHAPTER 9 Constructors: building objects with functions
var planet1 = buildPlanet(
 "Jupiter",
 5,
 "Gas Giant"
);

planet1.showPlanet();

In the showPlanet method you build up an information string including the planet’s
properties (name, position, and type) before logging the string to the console. You
use the += operator to append strings to the info variable.

 You can include as many methods as you need to give your objects the functionality
required. Every time you call buildPlanet, it returns an object with the properties
and methods required to do its job in your program. You can put the function to
work, churning out as many planet objects as you want. You can’t have too many plan-
ets, am I right?

 Listing 9.3 uses the buildPlanet function to construct three planets (okay, not
quite a production line, but you get the idea!) and display their details on the console:

> Jupiter: planet 5 – Gas Giant
> Neptune: planet 8 – Ice Giant
> Mercury: planet 1 – Terrestrial

var buildPlanet = function (name, position, type) {
 var planet = {};

 planet.name = name;
 planet.position = position;
 planet.type = type;

 planet.showPlanet = function () {
 var info = planet.name;
 info += ": planet " + planet.position;
 info += " - " + planet.type;
 console.log(info);
 };

 return planet;
};

var planets = [
 buildPlanet("Jupiter", 5, "Gas Giant"),
 buildPlanet("Neptune", 8, "Ice Giant"),
 buildPlanet("Mercury", 1, "Terrestrial")
];

planets.forEach(function (planet) {
 planet.showPlanet();
});

Listing 9.3 An array of constructed objects
(http://jsbin.com/jiweze/edit?js,console)

Use dot notation and
parentheses to call the
showPlanet method

Define the same
buildPlanet function
as in listing 9.2

Create an array of planet
objects and assign it to
the planets variable

Use forEach to pass each
planet object to a function
that calls showPlanet

http://jsbin.com/jiweze/edit?js,console

127Using constructor functions to build objects
In listing 9.3 you create an array with three elements, the objects that each call to
buildPlanet returns. You assign the array to the planets variable and then iterate
over the array using forEach. You don’t need to assign the three planets to individual
variables; the objects are accessible via an array index, with the first planet at index 0:

planets[0].name // "Jupiter"
planets[2].type // "Terrestrial"

In defining buildPlanet, you moved object creation into a function, returning the
nascent planet once you had set its properties. But JavaScript can create and return
objects for you. Let’s see how.

9.2 Using constructor functions to build objects
Creating your own function to build objects and attach methods should have given
you an insight into the steps involved in an object production line. It’s such a common
way to build objects that JavaScript provides its own standard mechanism—the con-
structor function.

 In the buildPlanet function, you created an empty object and set its properties,
and you returned the object.

var buildPlanet = function (name, position, type) {
 var planet = {}; // You create an empty object

 planet.name = name; //
 planet.position = position; // Assign properties
 planet.type = type; //

 return planet; // You return the object
};

Well, JavaScript has you covered; with constructor functions it will create the empty
object and return it for you free of charge. You still get to set the properties, but the
rest is automagical. And what mystic invocations transform an ordinary function into a
constructor function? Two keywords: this and new.

9.2.1 Constructor functions

In JavaScript, you define a constructor function just like any other function but call it
after the new keyword. If you have a Planet function, you could create new planet
objects like this:

planet1 = new Planet("Jupiter", 5, "Gas Giant");
planet2 = new Planet("Neptune", 8, "Ice Giant");

To use the Planet function as a constructor function you simply add the new keyword
before the call to Planet. It’s a convention to start the names of constructor func-
tions with capital letters so programmers know to use the new keyword when calling
them. Figure 9.2 shows how the constructor function automatically creates and
returns an object.

128 CHAPTER 9 Constructors: building objects with functions
The following listing shows the full Planet constructor along with an example of call-
ing Planet with new.

var Planet = function (name, position, type) {
 this.name = name;
 this.position = position;
 this.type = type;

 this.showPlanet = function () {
 var info = this.name + ": planet " + this.position;
 info += " - " + this.type;
 console.log(info);
 };
};

Listing 9.4 The Planet constructor
(http://jsbin.com/bixico/edit?js,console)

function (name , position , type)name position type

planet1 = new Planet("Jupiter", 5 , "Gas Giant");"Jupiter" 5 "Gas Giant"

planet1 = {
 name: "Jupiter",
 position: 5,
 type: "Gas Giant"
};

The return value
replaces the
function call

// var this = {};

this.name = name ;

this.position = position ;

this.type = type ;

name

position

type

5

"Gas Giant"

this.name = name ;

this.position = ;

this.type = ;

"Jupiter"

// return this;

1. JavaScript creates an

empty object automatically

2. You assign the

arguments to properties

3. JavaScript returns

the object automatically

Equivalent to

Figure 9.2 Call the constructor with the new keyword. The constructor automatically creates and
returns an object.

Assign to a variable that
begins with a capital letter

Set properties on this, which
has been assigned an empty
object automatically

http://jsbin.com/bixico/edit?js,console

129Using constructor functions to build objects
var planet = new Planet(
 "Jupiter",
 5,
 "Gas Giant"
);

planet.showPlanet();

Within the function body, but only when you call the function with new, JavaScript cre-
ates an empty object for you and assigns it to the special variable this. You can imag-
ine the hidden first line of the Planet function being

var this = {};

You can then set properties on this just as you did with planet in the buildPlanet
function earlier. The function automatically returns the object assigned to this, so
there’s no need to add a return statement. You can imagine the hidden last line of
the Planet function being

return this;

When you execute the code in listing 9.4, the newly created object replaces the call to
the Planet constructor and is assigned to the planet variable. The following

var planet = new Planet("Jupiter", 5, "Gas Giant");

becomes

var planet = {
 name: "Jupiter",
 position: 5,
 type: "Gas Giant",
 showPlanet: function () {
 var info = this.name + ": planet " + this.position;
 info += " - " + this.type;
 console.log(info);
 }
};

You can add as many properties and methods to the this object as you need. Listing 9.5
extends the Planet constructor to add a moons property and an addMoon method to
the generated objects:

> Jupiter: planet 5 – Gas Giant
> Moons: Io, Europa.

Call the function with the new
keyword to tell JavaScript to
assign an empty object to this

130 CHAPTER 9 Constructors: building objects with functions
var Planet = function (name, position, type) {
 this.name = name;
 this.position = position;
 this.type = type;
 this.moons = [];

 this.showPlanet = function () {
 var info = this.name + ": planet " + this.position;
 info += " - " + this.type;
 console.log(info);
 console.log(
 "Moons: " + this.moons.join(', ') + ".");
 };

 this.addMoon = function (moon) {
 this.moons.push(moon);
 };
};

var planet = new Planet("Jupiter", 5, "Gas Giant");

planet.addMoon("Io");
planet.addMoon("Europa");

planet.showPlanet();

Remember from chapter 8, the push method adds a new element to the end of an
array and the join method joins all of the elements of an array to form a single string,
with an optional separator string between each pair of elements.

 Planets and moons! Your industriousness knows no bounds. Io, Io, it’s off to work
we go ….

9.2.2 World building—making use of the Planet constructor

Listing 9.6 uses an updated implementation of the Planet constructor. When you
call addMoon, it now prepends new moons at the beginning of the moons array using
an array method you haven’t seen before: unshift. You create three planet objects
and assign them to variables planet1, planet2, and planet3 before calling show-
Planet on each one. In the partial output shown here, pay close attention to the
order of the moons:

> Jupiter
> Planet 5 – Gas Giant
> Moons: Europa, Io.

Listing 9.5 Including a moons array in the Planet constructor
(http://jsbin.com/wiguya/edit?js,console)

Create an empty array
and assign it to the
moons property

Join the elements of
the moons array to
form a string

Add the new moon to
the moons array using
the push method

http://jsbin.com/wiguya/edit?js,console

131Using constructor functions to build objects

var Planet = function (name, position, type) {
 this.name = name;
 this.position = position;
 this.type = type;
 this.moons = [];

 this.showPlanet = function () {
 console.log(this.name);
 console.log("Planet " + this.position + " - " + this.type);
 console.log("Moons: " + this.moons.join(', ') + ".");
 };

 this.addMoon = function (moon) {
 this.moons.unshift(moon);
 };
};

var planet1 = new Planet("Jupiter", 5, "Gas Giant");
planet1.addMoon("Io");
planet1.addMoon("Europa");

var planet2 = new Planet("Neptune", 8, "Ice Giant");
planet2.addMoon("Triton");

var planet3 = new Planet("Mercury", 1, "Terrestrial");

[planet1, planet2, planet3].forEach(function (planet) {
 planet.showPlanet();
});

In the code for planet1, you added Io first, then Europa. But in the output the order
is reversed. That’s because you now use unshift to add items at the start of the moons
array rather than push to add items at the end.

9.2.3 Telling objects apart with the instanceof operator

When working with many different objects in a program, objects that you may have
created with a number of different constructor functions, it’s sometimes useful to be
able to tell one type of object from another: is item1 a planet, a player, a post, or a
position? The JavaScript instanceof operator lets you check if a particular construc-
tor function was involved in the creation of an object. Assuming you’ve defined the
Planet constructor, the following code snippet logs true to the console:

var item1 = new Planet("Jupiter", 5, "Gas Giant");

console.log(item1 instanceof Planet);

The instanceof operator returns either true or false. The values true and false
are called boolean values. In fact, they’re the only two boolean values. You won’t be

Listing 9.6 Creating multiple planets with our constructor
(http://jsbin.com/wewewe/edit?js,console)

Use unshift to prepend
elements at the start of
the array

First add “Io” and
then add “Europa”

Use square brackets
to create an array and
immediately iterate
over it with forEach

http://jsbin.com/wewewe/edit?js,console

132 CHAPTER 9 Constructors: building objects with functions
using instanceof in the rest of Get Programming with JavaScript—I mention it here as
another reason why a programmer may prefer constructor functions over their own
object-creation functions. You’ll see a lot more of true and false in parts 2 and 3 of
the book; they’re central to making decisions and running code only if certain condi-
tions are met.

 To get a better feel for constructors, it’s worth looking at a few more examples. The
next section does just that, with constructors for quiz questions and calendar events.

9.3 Building mastery—two examples of constructors
A quiz is likely to have tens of questions and a calendar hundreds or thousands of
events. The questions will probably all have a similar structure and the events likewise.
Both types of objects seem like prime candidates for constructor functions.

 In listing 9.7, you use a QuizQuestion constructor to create a single question and
display it on the console:

> What is the capital of France?
> (1) Bordeaux
> (2) F
> (3) Paris
> (4) Brussels

var QuizQuestion = function (question, answer) {
 this.question = question;
 this.answer = answer;
 this.options = [];

 this.addOption = function (option) {
 this.options.push(option);
 };

 this.showQuestion = function () {
 console.log(this.question);
 this.options.forEach(function (option, i) {
 console.log("(" + (i + 1) + ") " + option);
 });
 };
};

var question1 = new QuizQuestion(
 "What is the capital of France?",
 "Paris"
);

question1.addOption("Bordeaux");
question1.addOption("F");
question1.addOption("Paris");
question1.addOption("Brussels");

question1.showQuestion();

Listing 9.7 A quiz question constructor
(http://jsbin.com/vuyesi/edit?js,console)

Include a second
parameter to catch
the index argument

Use brackets to
add 1 to the index
and use the result
in the string

http://jsbin.com/vuyesi/edit?js,console

133Building mastery—two examples of constructors
In the showQuestion function in listing 9.7, you use the forEach method to iterate
over the options array of possible answers. The forEach method passes each option
and its index to a function that displays the option along with an option number.

function (option, i) {
 console.log("(" + (i + 1) + ") " + option);
}

The index of the first option is 0 but you want the displayed numbers to start at (1).
You use (i + 1) rather than i to shift each index up by one for display.

> (1) Bordeaux
> (2) F
> (3) Paris
> (4) Brussels

The next listing is a simple constructor for calendar events. The showEvent method
produces the following output:

> Annual Review
> 3/5/16, from 4.00pm to 5.00pm

var CalendarEvent = function (title, startDate, startTime, endTime) {
 this.title = title;
 this.startDate = startDate;
 this.startTime = startTime;
 this.endTime = endTime;

 this.showEvent = function () {
 var dateString = [
 this.startDate,
 ", from ",
 this.startTime,
 " to ",
 this.endTime
].join("");

 console.log(this.title);
 console.log(dateString);
 };
};

var calEvent = new CalendarEvent(
 "Annual Review",
 "3/5/16",
 "4.00pm",
 "5.00pm"
);

calEvent.showEvent();

Listing 9.8 A calendar event constructor
(http://jsbin.com/gemiyu/edit?js,console)

Define a method to display
information about the current
calendar event

Build up the pieces of the
date string as elements
in an array

Join the elements of
the array to form the
full date string

http://jsbin.com/gemiyu/edit?js,console

134 CHAPTER 9 Constructors: building objects with functions
In the showEvent method, you create and immediately join an array to form a string
for the date information. You met the join method in chapter 8. This is quite a neat
way of building a string from multiple pieces. JavaScript programmers used to see
string concatenation, for example, using +=, as a relatively slow way of building strings
from substrings. Joining the elements of an array was a common alternative. These fol-
lowing two ways of building dateString give the same result:

var dateString = [
 this.startDate,
 ", from ",
 this.startTime,
 " to ",
 this.endTime
].join("");

var dateString = this.startDate;
dateString += ", from ";
dateString += this.startTime;
dateString += " to ";
dateString += this.endTime;

These days, in modern browsers, string concatenation is much faster than it was. I’ve
included an example of using join because you may well come across it in the wild.

 Constructor functions provide a standardized, streamlined way of creating multi-
ple objects using a single template. A great adventure will involve many locations; let’s
revisit The Crypt and use constructors to give your players plenty of places to plunder.

9.4 The Crypt—providing places to plunder
You’ll now apply your knowledge of constructor functions to The Crypt. Figure 9.3
shows where the focus of this section, creating Place objects by using constructor
functions, fits into the overall structure of our ongoing game example.

 Up until now, you’ve been focusing on the players in The Crypt. It’s time to build
some places to explore. Each place needs a title and description, a collection of items,

player variables

Players

a player object

showing player info

player items

Player Constructor

Places Maps

place objects

place items

place exits

Place Constructor

showing place info

linking places via exits

Game

render

get

go

Figure 9.3 Elements of The Crypt

135The Crypt—providing places to plunder

r

and a collection of exits to other places. It also needs methods for adding items and
exits and for displaying its information. Figure 9.4 highlights the elements you want to
see when you display a Place object on the console.

 Managing all of those elements will require quite a lot of code. As you’ve seen, a
constructor function is a good way to organize all that code and streamline the cre-
ation of multiple Place objects. This will be your most complicated constructor yet, so
let’s build it in stages.

9.4.1 Building the Place constructor—title and description

Okay, here’s a nice bare-bones constructor to get you started. It simply sets up the
title and description properties and a basic getInfo method that you can develop
as you add more properties. The initial output looks like this:

> The Old Library
> You are in a library. Dusty books line the walls.

var Place = function (title, description) {
 this.title = title;
 this.description = description;

 this.getInfo = function () {
 var infoString = this.title + "\n";

Listing 9.9 A Place constructor, part 1
(http://jsbin.com/pogive/edit?js,console)

===================
= The Old Library =
===================
You are in a library. Dusty books line the walls.

Items:
 - a rusty key

Exits from The Old Library:
 - The Kitchen
 - The Main Hall
==

A box around the title

A title

A description

A list of items

A list of exits

A border

Figure 9.4 The elements shown when a Place object is displayed on the console.

Assign the constructor function to a
variable that begins with a capital lette

Assign values to properties of the
automatically created this object

Create a method by assigning
a function to a property

http://jsbin.com/pogive/edit?js,console

136 CHAPTER 9 Constructors: building objects with functions
 infoString += this.description + "\n";
 return infoString;
 };
};

var library = new Place(
 "The Old Library",
 "You are in a library. Dusty books line the walls."
);

console.log(library.getInfo());

No boxes or borders yet—just the bare bones. You define a getInfo method that
returns a string containing the place’s title and description. Remember, "\n" is an
escape sequence used to specify a new-line character; the title will be on one line and
the description on the next.

 Okay, so you can create places. But how can players plunder those places? You
need some treasure!

9.4.2 Building the Place constructor—items for your hoard

As players explore their environment they expect to come across items that will
help them solve puzzles and overcome obstacles like locked doors, putrid zombies,
snarling leopards, and over-friendly tentacles. You need a way to add items to the
places you create and to include the items in the information displayed about
each location.

 Listing 9.10 extends your bare-bones constructor to include the item functionality
needed. You’ve upgraded the display of information by using the spacer namespace
from chapter 7; it now looks like this:

===================
= The Old Library =
===================
You are in a library. Dusty books line the walls.
Items:
 - a rusty key
==

That’s more like your target output from figure 9.4! The spacer code isn’t shown in
the listing but is on JS Bin.

var Place = function (title, description) {
 this.title = title;
 this.description = description;
 this.items = [];

Listing 9.10 A Place constructor, part 2
(http://jsbin.com/qemica/edit?js,console)

Call the constructor function
with the new keyword

Call the getInfo method and log
the return value to the console

Create an empty array
and assign it to the
items property

http://jsbin.com/qemica/edit?js,console

137The Crypt—providing places to plunder
 this.getItems = function () {
 var itemsString = "Items: " + spacer.newLine();
 this.items.forEach(function (item) {
 itemsString += " - " + item;
 itemsString += spacer.newLine();
 });

 return itemsString;
 };

 this.getInfo = function () {
 var infoString = spacer.box(
 this.title,
 this.title.length + 4,
 "="
);

 infoString += this.description;
 infoString += spacer.newLine();
 infoString += this.getItems();
 infoString += spacer.line(40, "=") + spacer.newLine();
 return infoString;
 };

 this.addItem = function (item) {
 this.items.push(item);
 };
};

var library = new Place(
 "The Old Library",
 "You are in a library. Dusty books line the walls."
);

library.addItem("a rusty key");

console.log(library.getInfo());

You use the spacer namespace to add new-line characters, put a box around the title,
and end the information string with a border. There’s a detailed description of how
the spacer methods work in chapter 7, so check back there if you need a reminder.

 You could have included an items parameter as part of the Place constructor
function. But you want to be able to add items to a place while the game is running—
when a player drops an item, for example—so you’ve kept the constructor function
simple and included an addItem method instead.

 What’s that down that dark passageway? A dragon’s lair? The bridge of a starship?
A lost valley of dinosaurs?

9.4.3 Building the Place constructor—exits to explore

One location does not an adventure make; players want to wander vast worlds of won-
der. The last addition to your Place constructor is a way to add exits leading to other

Define a getItems
method to build a
string of the items

Include a call to
getItems when building
info about a place

Define an addItem method
to add a new item to the
items array

Use the addItem
method to add an item

138 CHAPTER 9 Constructors: building objects with functions
locations. You include an array of exits for each place and a method for adding desti-
nations to the array. You need to display the exits, leading to your target output:

===================
= The Old Library =
===================
You are in a library. Dusty books line the walls.

Items:
 - a rusty key

Exits from The Old Library:
 - The Kitchen
 - The Main Hall
==

Once again, the spacer code has been omitted from the printed listing.

var Place = function (title, description) {
 var newLine = spacer.newLine();

 this.title = title;
 this.description = description;
 this.items = [];
 this.exits = [];

 this.getItems = function () { /* see listing 9.10 */ };

 this.getExits = function () {
 var exitsString = "Exits from " + this.title;
 exitsString += ":" + newLine;

 this.exits.forEach(function (exit) {
 exitsString += " - " + exit.title;
 exitsString += newLine;
 });

 return exitsString;
 };

 this.getTitle = function () {
 return spacer.box(
 this.title,
 this.title.length + 4,
 "="
);
 };

 this.getInfo = function () {
 var infoString = this.getTitle();
 infoString += this.description;
 infoString += newLine + newLine;
 infoString += this.getItems() + newLine;
 infoString += this.getExits();

Listing 9.11 A Place constructor, part 3
(http://jsbin.com/parale/edit?js,console)

Assign the new-line character
returned by spacer.newLine()
to the newLine variable

Create an empty
array and assign it
to the exits property

Define a getExits
method to build
an exit info string

Move the title
boxing code to its
own method

Use the new
methods to help
build the info string

http://jsbin.com/parale/edit?js,console

139The Crypt—providing places to plunder
 infoString += spacer.line(40, "=") + newLine;
 return infoString;
 };

 this.showInfo = function () {
 console.log(this.getInfo());
 };

 this.addItem = function (item) {
 this.items.push(item);
 };

 this.addExit = function (exit) {
 this.exits.push(exit);
 };
};

var library = new Place(
 "The Old Library",
 "You are in a library. Dusty books line the walls."
);

var kitchen = new Place(
 "The Kitchen",
 "You are in the kitchen. There is a disturbing smell."
);

var hall = new Place(
 "The Main Hall",
 "You are in a large hall. It is strangely empty."
);

library.addItem("a rusty key");
library.addExit(kitchen);
library.addExit(hall);

library.showInfo();

The listing is quite long, but you’ve seen all of the techniques before and there’s some
repetition. Focus on the methods one by one and take your time to follow the code.

 You start by setting up a quick shortcut. The spacer.newLine method always
returns the new-line escape sequence, "\n", so you call it once and assign the return
value to the newLine variable. You then use newLine instead of spacer.newLine().
That saves you some typing without impacting the readability of the code. You also
add getExits and getTitle methods that build their part of the place information
string. And the addExits method is just like the addItems method but—you guessed
it—for adding exits instead of items.

 The exits property holds an array of Place objects. In other words, each Place
object contains a collection of Place objects. This ability to nest objects inside objects
can lead to sophisticated models of real-world situations. Although a full model can be
quite complicated, each component should be relatively easy to understand. Your
game, The Crypt, provides you with enough moving parts to appreciate how complicated

Define an addExit
method to add a new
place to the exits array

Join the library to the
kitchen and to the hall

140 CHAPTER 9 Constructors: building objects with functions
programs can be constructed from simple pieces. Let’s revisit a piece you know well
and define a constructor function for player objects.

9.5 The Crypt—streamlining player creation
Figure 9.5 shows where a Player constructor function fits into the overall structure of
our ongoing game example.

In chapter 8 you added an array of items to Player objects and defined functions to
include the items when displaying player information. You still created the players
manually:

var player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50,
 items : ["a trusty lamp"]
};

You assigned the player display functions to their own variables—you collected quite
a bunch!

var getPlayerName = function (player) { … };
var getPlayerHealth = function (player) { … };
var getPlayerPlace = function (player) { … };
var getPlayerItems = function (player) { … };
var getPlayerInfo = function (player, character) { … };
var showPlayerInfo = function (player, character) { … };

The display functions combined to show information on the console, as shown in fig-
ure 9.6.

 To add an item to the player’s collection, you pushed it directly to the items array:

player1.items.push("a rusty key");

player variables

Players

a player object

showing player info

player items

Player Constructor

Places Maps

place objects

place items

place exits

Place Constructor

showing place info

linking places via exits

Game

render

get

go

Figure 9.5 Elements of The Crypt

141The Crypt—streamlining player creation
9.5.1 Organizing player properties

It’s time to wrangle all those pieces; you use your mastery of constructor functions to
streamline player creation, make the functions into methods, and do away with the
growing number of variables. The Player constructor will let you create Player
objects like this:

var player1 = new Player("Kandra", 50);

The constructor will also add a method you can call to add items, for example:

player1.addItem("a rusty key");

Listing 9.12 shows the code for the Player constructor function. It uses methods from
the spacer namespace introduced in chapter 7. The spacer code is included on JS
Bin but is not shown in the listing. To test a Player object created by the Player con-
structor, the listing also uses the Place constructor from section 9.4. Again, that code
is omitted here but included on JS Bin. And there’s a new type of value, null, that’s
explained in the sections after the listing.

 Once again, there’s quite a lot of code here (and even more on JS Bin), but don’t
worry; you’ve seen similar code before. Check the annotations, read the explanations
below the listing, and try the Further Adventures on JS Bin. It might be worth having a
quick look at The Crypt section from chapter 8 too; this builds on that.

var Player = function (name, health) {
 var newLine = spacer.newLine();

 this.name = name;
 this.health = health;

Listing 9.12 A Player constructor function
(http://jsbin.com/leqahi/edit?js,console)

================================
= Kandra =
================================
= Kandra is in The Old Library =
= Kandra has health 50 =
================================
 Items:
 - a rusty key
 - The Sword of Doom

================================

A box around the player’s name

Player name

Place info

A list of items

Player health

Borders

Figure 9.6 The elements shown when a Player object is displayed on the console.

http://jsbin.com/leqahi/edit?js,console

142 CHAPTER 9 Constructors: building objects with functions

r

 this.items = [];
 this.place = null;

 this.addItem = function (item) {
 this.items.push(item);
 };

 this.getName = function () {
 return this.name;
 };

 this.getHealth = function () {
 return this.name + " has health " + this.health;
 };

 this.getPlace = function () {
 return this.name + " is in " + this.place.title;
 };

 this.getItems = function () {
 var itemsString = "Items:" + newLine;

 this.items.forEach(function (item, i) {
 itemsString += " - " + item + newLine;
 });

 return itemsString;
 };

 this.getInfo = function (character) {
 var place = this.getPlace();
 var health = this.getHealth();
 var longest = Math.max(place.length, health.length) + 4;

 var info = spacer.box(this.getName(), longest, character);
 info += spacer.wrap(place, longest, character);
 info += newLine + spacer.wrap(health, longest, character);
 info += newLine + spacer.line(longest, character);

 info += newLine;
 info += " " + this.getItems();
 info += newLine;
 info += spacer.line(longest, character);
 info += newLine;

 return info;
 };

 this.showInfo = function (character) {
 console.log(this.getInfo(character));
 };
};

// Test the Player constructor

var library = new Place(
 "The Old Library",
 "You are in a library. Dusty books line the walls."
);

Assign null to the place property
until you create a place to assign it

Define a method to add
items to the items array

Return strings of player
information from the
‘get’ functions

Use the title property
of the Place object
assigned to this.place

Use the space
methods to
format player
information

Define a method to get a
player information string
and display it on the console

Create
a Place
object

143The Crypt—streamlining player creation
var player1 = new Player("Kandra", 50);

player1.place = library;

player1.addItem("a rusty key");
player1.addItem("The Sword of Doom");

player1.showInfo("=");

Phew! That’s another long listing. Let’s break it down.

9.5.2 Turning functions into methods

In chapters 7 and 8, you defined a number of functions to build up a string of player
information and display it, for example,

var getPlayerHealth = function (player) {
 return player.name + " has health " + player.health;
};

You pass a Player object to the function as an argument:

getPlayerHealth(player1);

The function then uses properties of the Player object to build up and return an
information string.

 You’ve now moved the functions into the Player constructor and assigned them to
properties of the special this object.

this.getHealth = function () {
 return this.name + " has health " + this.health;
};

When we assign functions as properties of objects, we call them methods. You invoke
the methods by using dot notation and parentheses:

player1.getHealth();

You no longer need to pass the Player object as an argument to the function. Where
this has been used in the function body, player1 will take its place.

return this.name + " has health " + this.health;

becomes

return player1.name + " has health " + player1.health;

Converting all of the functions into methods of the Player object does away with the
need for a separate variable for each function. It also keeps the function definitions
with the object on which they act. Neat!

Create a
Player object

Assign the Place
object to the player

144 CHAPTER 9 Constructors: building objects with functions
9.5.3 Assigning places to players

You need to know where players are in The Crypt. In earlier chapters, you assigned a
string to each player’s place property:

player1.place = "The Old Library";

But places are more than titles; Place objects created with the Place constructor have
titles, descriptions, arrays of items, exits, and methods. From now on, you’ll assign
players full Place objects:

var library = new Place(
 "The Old Library",
 "You are in a library. Dusty books line the walls."
);

var player1 = new Player("Kandra", 50);

player1.place = library;

As players explore their environment, you’re able to update the place property,
assigning a previously built Place object for each new location.

 Now that you’re assigning full Place objects to a player’s place property, the get-
Place method has to do a little extra work to build its information string:

this.getPlace = function () {
 return this.name + " is in " + this.place.title;
};

Previously, this.place held the title of the player’s current location; it now holds a
Place object. The title is now accessed via this.place.title.

9.5.4 Using null as a placeholder for objects

Notice, in listing 9.12, that you assign the special value null to the place property in
the constructor function. This shows that you intend to use a place property in your
program but you don’t have a value for it yet; you’ll only be able to assign a player’s
place property when you’ve created some places.

player.place = null; // You expect an object to be assigned later

/* other code */

player.place = library; // An object is assigned, as expected

DEFINITION null is its own type of value. It’s not a string, number, boolean
(true or false), or undefined. And it’s not an object. Programmers often use
it, as you have, to show that they haven’t yet assigned an object to a variable or
property but expect to assign one at some point.

Now that you have an efficient way of creating many objects, you can build all of the
places in The Crypt using a constructor function. You can add items and link the places

145Summary
together into a map. You can assign places to players. You still need to find a way for
players to move from place to place. Once you’ve done that, you’ll have a game envi-
ronment you can explore!

9.6 Summary
■ Use constructor functions to create objects with similar structures.
■ Assign constructor functions to variables starting with a capital letter. Naming

constructor functions this way is a widely followed convention:

 var Person = function (name) { … };

■ Call constructor functions with the new keyword. Assign the object returned to
a variable:

 var person = new Person("Jahver");

■ Use the special this variable to set properties within the constructor function.
this is automatically returned from the constructor:

 var Person = function (name) {
 this.name = name;
 };

 var person = new Person("Jahver");

■ Access properties of the returned object just like any other object:

 person.name; // Jahver

■ Assign functions to properties to create methods. Call the methods using dot
notation and parentheses:

 var Person = function (name) {
 this.name = name;
 this.sayHello = function () {
 return this.name + " says hi.";
 };
 };

 var person = new Person("Jahver");
 person.sayHello(); // Jahver says hi.

■ Assign the value null to variables or properties if you expect to assign an object
at some point but the object is not yet available:

 player1.place = null;

 /* other code */

 player1.place = library;

146 CHAPTER 9 Constructors: building objects with functions
■ Use the instanceof operator to check if a constructor function was involved in
creating an object. The operator returns a boolean value, true or false:

 var person = new Person("Jahver");

 person instanceof Person; // true

 person instanceof Planet; // false

Bracket notation:
flexible property names
In chapter 3 you saw how to create objects with curly braces and get and set proper-
ties with dot notation. You’ve used objects to model players, places, planets, and
posts as well as quizzes and calendar events. You’ve added functions as properties to
make methods and passed your objects to and from functions as arguments and
return values. Objects are the center of the JavaScript universe!

 In this chapter you take a look at a new way of working with object properties
that gives you more flexibility with the property names, lets you use variables as
keys, and gives you the ability to generate new properties from data while programs
are running.

 We also bring part 1 of Get Programming with JavaScript to a close with a working
version of The Crypt, finally giving players the chance to explore a map and collect

This chapter covers
■ Square brackets as an alternative to dot

notation
■ The use of square brackets to set and get

properties
■ The flexibility of square bracket notation
■ How to build a working game in The Crypt
147

148 CHAPTER 10 Bracket notation: flexible property names
treasure! Square bracket notation provides a better way for you to manage the links
between locations in the game, create a web of Place objects, and add a touch of mys-
tery to the adventure. Ooooo, mystery …

10.1 Using square brackets instead of dots
Up until now you’ve used dot notation to set and get object properties.

question1.question = "What is the capital of France?";

console.log(player1.name);

this.title = title;

The property name, its key, is joined to a variable name with a period, or dot. JavaScript
also offers an alternative approach: you can set and get properties by including a
property’s key as a string between square brackets.

question1["question"] = "What is the capital of France?";

console.log(player1["name"]);

this["title"] = title;

This new approach gives you more flexibility in the strings you can use as keys and lets
you add dynamic properties while your programs are running. Say you had a states
object that held the abbreviations of U.S. states as values, using the full names of states
as keys. You could use dot notation to find the abbreviation for Ohio

console.log(states.ohio); // OH

but, because of that pesky space, not for New Hampshire

console.log(states.new hampshire); // ERROR!

Square brackets solve the problem (figure 10.1):

console.log(states["new hampshire"]); // NH

states ["new hampshire"] = "NH";

Wrap the key in quotation marks

Use square brackets to specify a property
Figure 10.1 Using square bracket notation
to set a property

149Using square brackets instead of dots
And if you had a getStateCode function that used the states object, square bracket
notation would let you use a parameter as a key:

var getStateCode = function (stateName) {
 var stateCode = states[stateName];
 return stateCode;
};

Using a parameter to provide the key isn’t possible with dot notation. Table 10.1 shows
more situations in which square bracket notation is needed.

Let’s investigate these ideas with a few more examples.

Table 10.1 Situations in which certain keys do and don’t work

I want to I try Success?

Use ohio as a key in an object
literal

states = {
 ohio : "OH"
};

Yes

Use new hampshire as a key in
an object literal

states = {
 new hampshire : "NH"
};

No

Use "new hampshire" as a key
in an object literal

states = {
 "new hampshire" : "NH"
};

Yes

Use maryland as a key with dot
notation

states.maryland = "MD"; Yes

Use south carolina as a key
with dot notation

states.south carolina = "SC"; No

Use south carolina as a key
with square bracket notation

states["south carolina"] = "SC"; Yes

Use a parameter as a key with dot
notation

function (stateName) {
 return states.stateName;
}

No

Use a parameter as a key with
square bracket notation

function (stateName) {
 return states[stateName];
}

Yes

150 CHAPTER 10 Bracket notation: flexible property names
10.1.1 Brackets in action—people’s names as keys

Say you need to keep a simple record of people’s ages. You could use an ages object
where each person’s name is a key and their age is the corresponding value. List-
ings 10.1, 10.2, and 10.3 develop this approach, logging two ages to the console:

> 56
> 21

In the first listing, you set the properties using bracket notation and get them using
dot notation.

var ages = {};

ages["Kandra"] = 56;
ages["Dax"] = 21;

console.log(ages.Kandra);
console.log(ages.Dax);

The two methods are equivalent for the keys used in listing 10.1. If you want to
include spaces in the property names, you must use bracket notation. The next listing
shows a similar example using full names.

var ages = {};

ages["Kandra Smith"] = 56;
ages["Dax Aniaku"] = 21;

console.log(ages["Kandra Smith"]);
console.log(ages["Dax Aniaku"]);

Trying to use dot notation with property names that include spaces will confuse
JavaScript: ages.Kandra Smith will be interpreted as ages.Kandra and Smith will be
seen as a separate variable name, as shown in figure 10.2.

Listing 10.1 Bracket notation for object properties
(http://jsbin.com/kipedu/edit?js,console)

Listing 10.2 Longer strings as keys
(http://jsbin.com/toviya/edit?js,console)

Set the properties using bracket
notation and the names as keys

Get the properties using dot
notation and the names as keys

ages.Kandra Smith = 56;

JavaScript will look for the Smith variable or keyword

JavaScript will try to find the Kandra property
Figure 10.2 Spaces in property names
don’t work with dot notation.

http://jsbin.com/kipedu/edit?js,console
http://jsbin.com/toviya/edit?js,console

151Using square brackets instead of dots
The bracket notation immediately gives you the flexibility to use property names that
may make more sense in context, like people’s names, rather than being restricted to
the single words of dot notation.

 Bracket notation also allows you to add properties on the fly, when you may not
know the keys in advance. Maybe a user is entering the information or it’s being
fetched from a file or database. In the next listing, you include an addAge function for
adding new people to the ages object. If you run this listing you’ll be able to use the
function to add new people via the console.

var ages = {};

var addAge = function (name, age) {
 ages[name] = age;
};

addAge("Kandra Smith", 56);
addAge("Dax Aniaku", 21);

console.log(ages["Kandra Smith"]);
console.log(ages["Dax Aniaku"]);

In listing 10.3 you use the name parameter in the addAge function as the key for the
ages object. When you call addAge, the first argument you include in the call is
assigned to the name parameter. For example,

addAge("Kandra Smith", 56);

assigns "Kandra Smith" to name and 56 to age, so that

ages[name] = age;

becomes

ages["Kandra Smith"] = 56

This ability to use a variable between the square brackets for setting a property gives
you great versatility to dynamically create and mutate objects in your programs. You
make further use of the technique in sections 10.1.2 and 10.2.

 If you want to create an object with properties already in place, then you use the
curly braces syntax, with commas separating the key-value pairs. You can include
spaces in the keys if you wrap the keys in quotation marks. The following listing shows
the idea. It also introduces the Object.keys method that returns an array containing
all of the keys set on an object. In the listing, you print the keys array to the console.

> ["Kandra Smith", "Dax Aniaku", "Blinky"]

Listing 10.3 Using a function to add ages
(http://jsbin.com/pipuva/edit?js,console)

Include a name parameter; you
expect a name to be passed to the
function as an argument

Use the name passed to
the function as the key

http://jsbin.com/pipuva/edit?js,console

152 CHAPTER 10 Bracket notation: flexible property names
var ages = {
 "Kandra Smith" : 56,
 "Dax Aniaku" : 21,
 "Blinky" : 36
};

var keys = Object.keys(ages);

console.log(keys);

Object is a built-in JavaScript object. It provides a number of methods, one of which is
called keys. Because Object.keys returns an array, you can use forEach to pass each
key to a function. Listing 10.5 passes each key in turn to the console.log function
that simply logs the key to the console.

> Kandra Smith
> Dax Aniaku
> Blinky

var ages = {
 "Kandra Smith" : 56,
 "Dax Aniaku" : 21,
 "Blinky" : 36
};

var keys = Object.keys(ages);

keys.forEach(function (key) {
 console.log(key);
});

Let’s check out another example of using square bracket notation’s ability to include
complicated property names.

10.1.2 Making the most of square bracket notation—word counts

As the social media expert at your workplace, you’ve been tasked with analyzing tweets.
Your first job is to count the number of times each word is used in a batch of tweets.
Figure 10.3 shows parts of the console output of a tweet-analyzing program.

 The program is shown in the following listing (with only three tweets to save space)
and uses an object, words, to record the word counts.

Listing 10.4 Using Object.keys
(http://jsbin.com/mehuno/edit?js,console)

Listing 10.5 Iterating over Object.keys with forEach
(http://jsbin.com/seteco/edit?js,console)

Blinky doesn’t need the
quotation marks; include
them for consistency.

Use Object.keys to obtain an
array of the property names
set on the ages object

Obtain an array of the
property names used
with the ages object

Log each property
name to the console

http://jsbin.com/mehuno/edit?js,console
http://jsbin.com/seteco/edit?js,console

153Using square brackets instead of dots
var tweets = [
 "Education is showing business the way by using technology to share

➥ information. How do we do so safely?",
 "Enjoy a free muffin & coffee with Post Plus, our new loyalty club

➥ exclusive to subscribers!",
 "We're LIVE on Periscope right now answering all your #pet questions

➥ - tweet us yours now!"
];

var words = {};
var tweetText = tweets.join(" ");
var tweetWords = tweetText.split(" ");

tweetWords.forEach(function (word) {
 words[word] = 0;
});

tweetWords.forEach(function (word) {
 words[word] = words[word] + 1;
});

console.log(words);

The program does quite a lot in a few lines of code. First, it uses the join array
method (introduced in chapter 8) to join all of the tweets to form one long string with
a space between each pair of tweets. Next, it uses the split method to create an
array of all of the words. split is a built-in string method. You can use it to break a
string into pieces, with each piece as an element of an array. If you assign a string to
the message variable

var message = "I love donuts";

you can break the string into an array with three elements by calling the split
method on the variable.

console.log(message.split(" "));

> ["I", "love", "donuts"]

Listing 10.6 Counting words from tweets
(http://jsbin.com/figati/edit?js,console)

Figure 10.3 Counting
words used in tweets

Join all the tweets to
make one long string

Create an array of words
using the split method

Create a property for each
word, setting its value to 0

Add one to the value every
time the word appears

http://jsbin.com/figati/edit?js,console

154 CHAPTER 10 Bracket notation: flexible property names
The argument you pass to the split method is a string the function uses to decide
where to split the text. The previous example uses a space as the separator, but any
string will work. Here’s an example using commas:

var csv = "Kandra Smith,50,The Dungeon of Doom";
var details = csv.split(",");
console.log(details);

> ["Kandra Smith", "50", "The Dungeon of Doom"]

If you pass the empty string, "", as the argument to split, it creates an array of all of
the individual characters used in the text:

var message = "I love donuts";
console.log(message.split(""));

> ["I", " ", "l", "o", "v", "e", " ", "d", "o", "n", "u", "t", "s"]

Back to your tweet analyzer. Once it generates the array of words with split, listing 10.6
iterates over the array of words twice. The first time, it creates properties with the
words as keys and zero as the values. ["I", "love", "donuts"] leads to

words["I"] = 0;
words["love"] = 0;
words["donuts"] = 0;

If a word appears more than once, its property will be assigned zero each time—a little
redundancy but not a problem. On the second iteration, the code adds one to a prop-
erty’s value every time the word appears.

words["I"] = words["I"] + 1;
words["love"] = words["love"] + 1;
words["donuts"] = words["donuts"] + 1;

Alternatively, you could use the += operator to add one to the count for each word.
You’ve seen += used to concatenate strings but it also works with numbers, adding a
new number to an existing number. The following two statements are equivalent:

words[word] = words[word] + 1;
words[word] += 1;

In fact, if you just want to add one each time, there’s an operator for exactly that pur-
pose, ++. The following two statements are equivalent:

words[word] += 1;
words[word]++;

But you want your code to be easy to follow and ++ is a bit terse (as well as having some
other complications we won’t go into). You’ll probably bump into it out and about in
codeland, but you won’t use it in this book until part 4.

155The Crypt—enhancing exit excitement
 You’ve iterated over all of the words twice. By the end of the second iteration, each
property has a word as a key and the word’s count as its value. Well done; have a pay
raise! Do check out the working example on JS Bin and add more tweets or text from
other sources for analysis.

 With a simple tweak, you can perform a letter count instead of a word count. The
next listing shows how.

var tweets = [/* unchanged from listing 10.6 */];

var letters = {};
var tweetText = tweets.join("");
var tweetLetters = tweetText.split("");

tweetLetters.forEach(function (letter) {
 letters[letter.toLowerCase()] = 0;
});

tweetLetters.forEach(function (letter) {
 letters[letter.toLowerCase()] += 1;
});

console.log(letters);

Listing 10.7 works in the same way as listing 10.6, using join and split to create an
array and then iterating over the array twice to perform the count.

 In the next section, you put square bracket notation’s ability to work with arbitrary
strings to good use managing exits in The Crypt.

10.2 The Crypt—enhancing exit excitement
You’ll now apply your knowledge of square bracket notation to The Crypt. Figure 10.4
shows where the focus of this section, linking places via exits, fits into the overall struc-
ture of our ongoing game example.

Listing 10.7 Counting letters from tweets
(http://jsbin.com/rusufi/edit?js,console)

Pass the empty string to
split to create an array of
individual characters

Convert all letters to lowercase
and use them as keys

Use the += operator to add 1
for each occurrence of a letter

player variables

Players

a player object

showing player info

player items

Player Constructor

Places Maps

place objects

place items

place exits

Place Constructor

showing place info

linking places via exits

Game

render

get

go

Figure 10.4 Elements of The Crypt

http://jsbin.com/rusufi/edit?js,console

156 CHAPTER 10 Bracket notation: flexible property names
As it stands, the Place constructor you defined for The Crypt in chapter 9 gives away a
little too much when it lists the exits for the current place in a game:

===============
= The Kitchen =
===============
You are in a kitchen. There is a disturbing smell.

Items:
 - a piece of cheese

Exits from The Kitchen:
 - The Kitchen Garden
 - The Kitchen Cupboard
 - The Old Library
==

It lists what players will find when they leave the current location. By the end of this
section, you inject a bit more mystery by simply listing the directions available rather
than the destinations.

Exits from The Kitchen:
 - west
 - east
 - south

Players will find out what’s around the corner only when they get there. Feel the tension!
 To help you focus on using objects with square bracket notation to enhance the

exits—that’s what this chapter is all about after all—you create a new, simplified Place
constructor on which to experiment. Then, in section 10.2.4, you use your burgeon-
ing square bracket skills to update your constructor from chapter 9.

10.2.1 Using an object to hold the exits

To add that extra layer of the unknown, you use an exits object rather than an exits
array. The object keys are directions, like "north" or "the trapdoor", and the values
are the destinations. Listing 10.8 displays the directions and destinations on the con-
sole. You hide the destinations later.

> north goes to The Kitchen
> the trapdoor goes to The Dungeon

var Place = function (title) {
 this.title = title;
};

var kitchen = new Place("The Kitchen");
var dungeon = new Place("The Dungeon");

Listing 10.8 An exits object
(http://jsbin.com/daqato/edit?js,console)

Define a simple Place
constructor function

Use the Place constructor function
to create two Place objects

http://jsbin.com/daqato/edit?js,console

157The Crypt—enhancing exit excitement

Creat
em

object
assi

to

vari
var exits = {};

exits["north"] = kitchen;
exits["the trapdoor"] = dungeon;

var keys = Object.keys(exits);

keys.forEach(function (key) {
 console.log(key + " goes to " + exits[key].title);
});

In listing 10.8, you begin by defining a very simple Place constructor function. Remem-
ber from chapter 9 that when you call a constructor function with the new keyword,
JavaScript automatically creates an empty object and assigns it to the special this vari-
able. You set the title property of this to the value of the title parameter.

var Place = function (title) {
 this.title = title;
};

You immediately use the constructor function to create two Place objects:

var kitchen = new Place("The Kitchen");
var dungeon = new Place("The Dungeon");

To keep things simple, you use a single exits variable for now. Later, you include it as
part of the Place constructor function. So, you create an empty object and assign it to
the exits variable:

var exits = {};

You have two Place objects, kitchen and dungeon, and you want to set them as desti-
nations for different directions. You create corresponding properties on the exits
object, using the directions as keys and the destinations as values:

exits["north"] = kitchen;
exits["the trapdoor"] = dungeon;

Finally, you use the forEach method to pass each key (in other words, each direction)
in turn to the function specified.

console.log(key + " goes to " + exits[key].title);

The keys are "north" and "the trapdoor", so the code is the same as

console.log("north" + " goes to " + exits["north"].title);
console.log("the trapdoor" + " goes to " + exits["the trapdoor"].title);

e an
pty

 and
gn it
 the

exits
able

Assign the Place objects to properties of
the exits object, using directions as keys

Use the title property
of each Place to show
the destination

158 CHAPTER 10 Bracket notation: flexible property names
But exits["north"] is the kitchen object and exits["the trapdoor"] is the dungeon
object, so the code becomes

console.log("north" + " goes to " + kitchen.title);
console.log("the trapdoor" + " goes to " + dungeon.title);

leading to the output shown before the listing.

10.2.2 Creating functions to add and display exits

Okay, so you successfully used square bracket notation to associate directions and des-
tinations. In listing 10.9 you add a couple of helper functions to the code, addExit
and showExits, to simplify the adding and displaying of exits. The output is the same
as for listing 10.8:

> north goes to The Kitchen
> the trapdoor goes to The Dungeon

var Place = function (title) {
 this.title = title;
};

var kitchen = new Place("The Kitchen");
var dungeon = new Place("The Dungeon");

var exits = {};

var addExit = function (direction, place) {
 exits[direction] = place;
};

var showExits = function () {
 var keys = Object.keys(exits);

 keys.forEach(function (key) {
 console.log(key + " goes to " + exits[key].title);
 });
};

addExit("north", kitchen);
addExit("the trapdoor", dungeon);

showExits();

The addExit function takes two arguments: a direction string and a Place object.
The direction string becomes a new key on the exits object; the Place object becomes
the corresponding value.

addExit("north", kitchen);

Listing 10.9 Functions to add and show exits
(http://jsbin.com/mibube/edit?js,console)

Define an addExit
function to add a Place
for a given direction

Define a showExits function
to display the destinations
for each exit

Call addExit twice
to add two exits

Call showExits to display
information about all the exits

http://jsbin.com/mibube/edit?js,console

159The Crypt—enhancing exit excitement
executes the code

exits["north"] = kitchen;

The showExits function iterates over the keys of the exits object (in other words, it
iterates over the directions) and displays the destination for each direction.

10.2.3 Giving each place object its own set of exits

You’ve seen how you can use an exits object to model directions and destinations.
But each place object needs its own set of exits. You don’t want to mix up the exits
from The Fairy Fun Park with the exits from The Dungeon of Doom. In listing 10.10,
you move the exits object into the Place constructor. To test the functionality of the
new Place constructor, you create three places, library, kitchen, and garden, and
add a couple of exits to kitchen. The kitchen exits are then displayed:

> Exits from The Kitchen:
> south
> west

var Place = function (title, description) {
 this.title = title;
 this.exits = {};

 this.addExit = function (direction, exit) {
 this.exits[direction] = exit;
 };

 this.showExits = function () {
 console.log("Exits from " + this.title + ":");

 Object.keys(this.exits).forEach(function (key) {
 console.log(key);
 });
 };
};

var library = new Place("The Old Library");
var kitchen = new Place("The Kitchen");
var garden = new Place("The Kitchen Garden");

kitchen.addExit("south", library);
kitchen.addExit("west", garden);

kitchen.showExits();

Listing 10.10 An exits object in the Place constructor
(http://jsbin.com/foboka/edit?js,console)

Add an exits object to the
constructor so that each place
created gets a set of exits

Set the addExit
function as a method
of each Place object

Set the showExits
function as a method
of each Place object

Use the Place constructor
to create Place objects

Use dot notation to call the addExit method
and link the kitchen to the library and garden

Use dot notation to call
the showExits method

http://jsbin.com/foboka/edit?js,console

160 CHAPTER 10 Bracket notation: flexible property names
The addExit and showExits functions are designed to work with Place and exits
objects, so it makes sense to bundle them with the other place code inside the con-
structor. You can then use dot notation and parentheses to call the functions:

kitchen.addExit("south", library);
kitchen.showExits();

Listing 10.11 uses the same Place code to build a slightly bigger map, linking four
locations, as shown in figure 10.5.

The output from two locations is shown on the console:

> Exits from The Old Library:
> north
> Exits from The Kitchen:
> south
> west
> east

var Place = function (title, description) {
 this.title = title;
 this.exits = {};

 this.addExit = function (direction, exit) {
 this.exits[direction] = exit;
 };

 this.showExits = function () {
 console.log("Exits from " + this.title + ":");

 Object.keys(this.exits).forEach(function (key) {
 console.log(key);
 });
 };
};

var library = new Place("The Old Library");
var kitchen = new Place("The Kitchen");
var garden = new Place("The Kitchen Garden");
var cupboard = new Place("The Kitchen Cupboard");

Listing 10.11 A map with four locations
(http://jsbin.com/bufico/edit?js,console)

The Kitchen

The Old Library

The Kitchen Garden The Kitchen Cupboard

Figure 10.5 A map with four locations

Use the same Place
constructor as listing 10.10

Use the constructor
to create four Place
objects

http://jsbin.com/bufico/edit?js,console

161The Crypt—enhancing exit excitement
library.addExit("north", kitchen);
garden.addExit("east", kitchen);
cupboard.addExit("west", kitchen);

kitchen.addExit("south", library);
kitchen.addExit("west", garden);
kitchen.addExit("east", cupboard);

library.showExits();
kitchen.showExits();

Notice how, once you’ve defined a Place constructor, you can use it to create and link
as many places as you need. The constructor code can stay the same—you can move it
from one adventure into another—all you need to change are the places you create,
the map data.

10.2.4 Adding the exits object to the full Place constructor

So far in section 10.2, you’ve seen how to combine an exits object with square
bracket notation to manage the links between Place objects in The Crypt. To keep the
focus on the square brackets, you built up the code starting with a new, simple Place
constructor. It’s time to combine the enhanced exits with the great work you did
building constructors in chapter 9, to produce the format of output for each place
shown in figure 10.6.

Listing 10.12 shows the complete Place constructor function code. Most of it was dis-
cussed in chapter 9, so head back there if you need to refresh your memory. The new
exits code is shown in bold and is annotated. The listing on JS Bin includes map info
that is discussed in the next section.

Add exits to
the kitchen

Add exits from
the kitchen

Show the exits for the
library and kitchen

===============
= The Kitchen =
===============
You are in a kitchen. There is a disturbing smell.

Items:
 - a piece of cheese

Exits from The Kitchen:
 - south
 - west
 - east
==

A list of directions
Figure 10.6 The console
output for a Place object
when you call showInfo

162 CHAPTER 10 Bracket notation: flexible property names
var Place = function (title, description) {
 var newLine = spacer.newLine();

 this.title = title;
 this.description = description;
 this.items = [];
 this.exits = {};

 this.getItems = function () {
 var itemsString = "Items: " + newLine;
 this.items.forEach(function (item) {
 itemsString += " - " + item;
 itemsString += newLine;
 });
 return itemsString;
 };

 this.getExits = function () {
 var exitsString = "Exits from " + this.title;
 exitsString += ":" + newLine;

 Object.keys(this.exits).forEach(function (key) {
 exitsString += " - " + key;
 exitsString += newLine;
 });

 return exitsString;
 };

 this.getTitle = function () {
 return spacer.box(
 this.title,
 this.title.length + 4,
 "="
);
 };

 this.getInfo = function () {
 var infoString = this.getTitle();
 infoString += this.description;
 infoString += newLine + newLine;
 infoString += this.getItems() + newLine;
 infoString += this.getExits();
 infoString += spacer.line(40, "=") + newLine;
 return infoString;
 };

 this.showInfo = function () {
 console.log(this.getInfo());
 };

 this.addItem = function (item) {
 this.items.push(item);
 };

Listing 10.12 A Place constructor function
(http://jsbin.com/zozule/edit?js,console)

Change the exits
property from an
array to an object

Update the getExits
method to show
directions rather
than destinations

http://jsbin.com/zozule/edit?js,console

163The Crypt—enhancing exit excitement
 this.addExit = function (direction, exit) {
 this.exits[direction] = exit;
 };
};

With this latest version of the Place constructor, you can create place objects, manage
their items and exits, and display formatted information (courtesy of spacer) on the
console. Let’s take it for a spin.

10.2.5 Testing the Place constructor

To test the Place constructor, you re-create the map from listing 10.11 that links four
locations: kitchen, library, garden, and cupboard. The next listing shows the map-
creation code. The output is shown in figure 10.6.

var kitchen = new Place(
 "The Kitchen",
 "You are in a kitchen. There is a disturbing smell."
);
var library = new Place(
 "The Old Library",
 "You are in a library. Dusty books line the walls."
);
var garden = new Place(
 "The Kitchen Garden",
 "You are in a small, walled garden."
);
var cupboard = new Place(
 "The Kitchen Cupboard",
 "You are in a cupboard. It's surprisingly roomy."
);

kitchen.addItem("a piece of cheese");
library.addItem("a rusty key");
cupboard.addItem("a tin of spam");

kitchen.addExit("south", library);
kitchen.addExit("west", garden);
kitchen.addExit("east", cupboard);

library.addExit("north", kitchen);
garden.addExit("east", kitchen);
cupboard.addExit("west", kitchen);

kitchen.showInfo();

You follow the map-creation code with a call to kitchen.showInfo to test that the
kitchen object and its items and exits have been created as expected.

Listing 10.13 Testing the Place constructor
(http://jsbin.com/zozule/edit?js,console)

Update the addExit
function to work with
the exits object

Call the Place
constructor with
the new keyword
to create place
objects

Add items to
each place

Add exits from
the kitchen

Add exits to
the kitchen

Show the information for
the kitchen on the console

http://jsbin.com/zozule/edit?js,console

164 CHAPTER 10 Bracket notation: flexible property names
10.3 The Crypt—let the games begin!
You’re so close! You have everything you need to build and display a universe of worlds
for players to explore:

■ The spacer namespace
■ The Player constructor
■ The Place constructor
■ The map-creation code

There’s one more piece to be added before players can be set free on their adventures:

■ Game controls

Figure 10.7 shows the three game functions you’ll create in this section and how they
fit into the overall structure of our ongoing example.

You want players to be able to issue commands at the console prompt, commands to
move from place to place and to pick up items that they find. For example, to move
north and pick up an item, a player would type

> go("north")
> get()

Luckily, because of the work you put into the constructors, the game control code is
actually quite short. It’s shown here.

var render = function () {
 console.clear();
 player.place.showInfo();
 player.showInfo("*");
};

Listing 10.14 Playing the game
(http://jsbin.com/sezayo/edit?js,console)

player variables

Players

a player object

showing player info

player items

Player Constructor

Places Maps

place objects

place items

place exits

Place Constructor

showing place info

linking places via exits

Game

render

get

go

Figure 10.7 Elements of The Crypt

Define a render
function to clear the
console and display
player and place info

http://jsbin.com/sezayo/edit?js,console

165The Crypt—let the games begin!
var go = function (direction) {
 player.place = player.place.exits[direction];
 render();
 return "";
};

var get = function () {
 var item = player.place.items.pop();
 player.addItem(item);
 render();
 return "";
};

var player = new Player("Kandra", 50);
player.addItem("The Sword of Doom");
player.place = kitchen;

render();

You create three functions: render, go, and get. Each function is discussed in its own
section next. Both go and get end by returning an empty string, "". When you call
functions at the console, it automatically displays their return values. Returning an
empty string prevents the console from displaying the return value undefined.

10.3.1 Updating the display—render

At the start of each game and each time a player takes an action, you want to update
the display on the console. Both Place objects and Player objects have showInfo
methods to display their current state; for example,

player.showInfo("*");
kitchen.showInfo();

The program assigns the player’s current location to their place property. To display
information about the current place, you therefore include the code

player.place.showInfo();

You could keep appending text to the console, but it’s neater to clear it and start
from a blank slate after each player action. The clear method removes the text
from the console.

console.clear();

You update the console after a player moves and after they pick up an item. Rather
than repeating the display code, you wrap it inside the render function and call it
on demand.

Define a go function
that moves a player
to the place in the
specified direction

Define a get function
that lets a player
pick up items

Create a player, give
them a sword, and put
them in the kitchen

Call render to display initial info
about the player and place

166 CHAPTER 10 Bracket notation: flexible property names
10.3.2 Exploring the map—go

To move to a new location, a player calls the go function, specifying the direction in
which they want to move:

go("south");

You need to find the destination for the direction the player specifies and assign it as
the player’s new location:

player.place = player.place.exits[direction];

In the expression on the right side of the assignment, you use square bracket notation
to retrieve the Place object for the direction specified, exits[direction]. You use
dot notation to access the exits object:

player; // The Player object

player.place; // The player’s current location
 // A Place object

player.place.exits; // The exits from the current location.
 // An object with directions as keys and
 // destinations as values.

player.place.exits[direction]; // The place is the specified direction.
 // A Place object.

The Place object for the destination is assigned to the player’s place property, replac-
ing their old location. They’ve moved.

10.3.3 Collecting all the things—get

To pick up an item, the player calls the get function:

get();

You remove the item from the current location and add it to the player’s array of
items. The current location is player.place. The items at the current location are
held in the player.place.items array. To remove and return the last item in the
items array, you use the pop method:

var item = player.place.items.pop();

You then add it to the player’s collection:

player.addItem(item);

And that’s it! You’ve given players the ability to boldly go from place to place, picking
up any treasure they might find.

167Summary
10.3.4 Designing a bigger adventure—Jahver’s ship

Four locations based around a kitchen may not be the world of adventure you were
hoping for. To conjure mystical realms, replicate dystopian futures, and weave webs
of intrigue, all you need to do is change the map section of the code. Have a go at
building your own locations, linking them via exits, and stocking them with interest-
ing artifacts.

 To get you started, there’s a brief adventure you can explore and extend on JS Bin,
at http://jsbin.com/yadabo/edit?console. You may need to click Run to start the
game. It’s set on a small space-freighter called The Sparrow. There are six items to col-
lect, not including your blaster. Once you’ve collected all of the items, open up the
JavaScript panel and try adding a few more locations. Happy hunting!

10.4 What’s next?
While it’s great to have a working game, the code for The Crypt isn’t very robust. A
player can easily break it, by trying to go in a nonexistent direction, for example. They
can also access all the game objects at the console—it’s easy to award themselves extra
treasure or teleport to a new location:

> player.addItem("riches beyond my wildest dreams")
> player.place = treasureRoom

And the game could certainly do with more challenge. There should be puzzles that
can be overcome only with certain items.

 In part 2 of Get Programming with JavaScript, you’ll address those issues by splitting
your code into modules, preventing access to objects, setting conditions for when
code runs, and separating data from the display of data. Such organization will help
you design and manage programs as they get larger and more complicated and set
you up nicely for working with web pages in part 3.

10.5 Summary
■ Use a string between square brackets to specify property names:

player["Kandra"] = 56;
exits["north"] = kitchen;
words["to"] = words["to"] + 1;

■ In particular, use square brackets when the property names include spaces or
other characters not allowed with dot notation:

player["Kandra Smith"] = 56;
exits["a gloomy tunnel"] = dungeon;
words["!"] = 0;

http://jsbin.com/yadabo/edit?console

168 CHAPTER 10 Bracket notation: flexible property names
■ Use function parameters to dynamically assign property names when the func-
tion is called:

var scores = {};
var updateScore = function (playerName, score) {
 scores[playerName] = score;
};
updateScore("Dax", 2000);
console.log(scores["Dax"]);

■ Pass an object as an argument to the Object.keys method to create an array of
the object’s keys:

var scores = {
 Kandra : 100,
 Dax : 60,
 Blinky : 30000
};
var keys = Object.keys(scores); // ["Kandra", "Dax", "Blinky"]

■ Break a string into an array with the split method. Pass as an argument the
string used to determine where to make the breaks:

var query = "page=5&items=10&tag=pluto";
var options = query.split("&"); // ["page=5", "items=10", "tag=pluto"]

Part 2

Organizing
your programs

Sharing code is common among programmers; many problems have been
solved by others already, and your solutions could prove useful in your own
future projects, to your team, or to the wider developer community. When code
modules are shared, it’s important to make clear how others should use them by
defining a clear interface, or set of properties and functions you expect users to
utilize. The internals of a module—how you make it do its job—should be pro-
tected. Part 2 looks at ways of using local rather than global variables to hide a
module’s implementation from other code.

 As your programs grow, the need for organization increases, and you’ll start to
notice patterns and procedures you use again and again. Part 2 also looks at ways
of using modules in your code to improve flexibility, reuse, and maintainability.
Your code’s flexibility may be improved by executing parts of it only if certain con-
ditions are met, and you’ll see how to specify those conditions with if statements.

 The modules you create will usually perform specific, well-defined tasks within
a project. Three common types of module are models, for representing and work-
ing with data, views for presenting the data in models, and controllers for updating
models and views in response to user or system actions.

 By the end of part 2, you’ll have broken The Crypt into modules and updated
the game to include challenges: puzzles for players to overcome.

Scope: hiding information
You want the user to be able to interact with your console-based programs. But you
don’t want to give them too much control! This chapter explores ways of hiding
parts of your program from the user at the console and clearly defining the proper-
ties and methods you expect them to use. For example, for a quiz program the user
should be able to submit an answer but not change their score:

> quiz.submit("Ben Nevis") // OK

> quiz.score = 1000000 // Don’t let the user do this!

By separating the public interface from the private variables and functions that make
the program work, you declare your intentions, setting out what a user can do and

This chapter covers
■ The dangers of global variables
■ The benefits of local variables
■ Using namespaces to reduce global variables
■ Creating local variables with functions
■ Returning an interface for the user
171

172 CHAPTER 11 Scope: hiding information
what other programmers using your code should do, and reduce the risk of code being
misused. That’s good for the program, for the players, and for other programmers.

 Functions are the key. Whereas variables declared outside functions are accessible
everywhere in the program, those declared inside functions are accessible only within
the function. This chapter will show you how to return objects from functions with
only those properties and methods you want to be accessible to users. Constructors
are functions too, and you’ll see how to use their special this object to set up public
properties and methods.

 Finally, you’ll apply what you’ve learned to The Crypt, removing user access to con-
structors, places, and player properties and providing methods to display player and
place information and to navigate the map. Users will be able to do this:

> game.go("north") // Move from place to place
> game.get() // Pick up an item

Users won’t be able to cheat the game by doing this:

> player.health = 1000000
> player.place = exit
> player.items.push("The Mega-Sword of Ultimate Annihilation")

Let’s start by highlighting the pitfalls of variables you can see anywhere in the pro-
gram; they seem like such a good idea! [Spoiler: they’re not.]

11.1 The dangers of global variables
Way back in chapter 2, at the start of your adventures in JavaScript, you discovered
how to declare, assign, and use variables. The following listing shows a really simple
example of the process that displays the name of a mountain on the console:

> Ben Nevis

var mountain;

mountain = "Ben Nevis";

console.log(mountain);

You declare the variable, mountain, on the first line of the program. You can then use
the variable throughout the code; you assign it a value and pass it to console.log as
an argument.

 Functions in the program can also access the mountain variable (figure 11.1).

Listing 11.1 Declare, assign, and use a variable
(http://jsbin.com/gujacum/edit?js,console)

http://jsbin.com/gujacum/edit?js,console

173The dangers of global variables
The next listing shows a showMountain function using mountain, leading to the same
output as listing 11.1.

var mountain = "Ben Nevis";

var showMountain = function () {
 console.log(mountain);
};

showMountain();

Variables like mountain, declared outside any function and so accessible everywhere,
are called global variables. You may think these global variables sound really useful:
declare them once and then use them freely from anywhere in your code. Unfortu-
nately, they have some serious downsides and are generally considered to be a bad
thing. Let’s investigate reasons for avoiding these naughty globals.

11.1.1 Access all areas—peeking and tweaking

You want users to be able to interact with your programs at the console. You don’t want
them to have a sneaky peek at all the geeky variables. The next listing shows a tiny quiz.

var question = "What is the highest mountain in Wales?";
var answer = "Snowdon";

console.log(question);

Because question and answer are global variables, they’re accessible throughout the
program and via the console. At the console prompt, once users run the program,

Listing 11.2 Accessing a variable from within a function
(http://jsbin.com/zojida/edit?js,console)

Listing 11.3 A tiny quiz
(http://jsbin.com/nubipi/edit?js,console)

functions can see out
and use variables declared

outside of them

function () {

 console.log(mountain)

}

mountain = "Ben Nevis";

Figure 11.1 The function can see the mountain variable that’s outside the
function body.

Declare the mountain variable,
outside any function

Use the variable, even
inside a function

http://jsbin.com/zojida/edit?js,console
http://jsbin.com/nubipi/edit?js,console

174 CHAPTER 11 Scope: hiding information
they can type answer and press Enter and display the value of the answer variable. A
sneaky peek at our geeky peak!

> answer
 Snowdon

It’s not just sneaky peeks that are a problem; it’s sneaky tweaks too! Users can change
the value of global variables at will, updating scores, bank balances, velocities, prices,
and answers.

> answer = "Tryfan"

11.1.2 Access all areas—relying on an implementation

The idea of not relying on an implementation is important but might require time to
appreciate fully. Don’t worry if not everything clicks the first time through—you can
always return to it after reading the other examples in the chapter.

 Sneaky peeks and tweaks can be a problem for programmers too (see the sidebar
“Who’s using your code?”). If you’ve written code that is then used by other program-
mers, you probably don’t want them to be tinkering under the hood, writing their
own code that relies on the internals of yours. When you release a new version of your
code that uses a more efficient algorithm internally, other code that has been relying
on some of your variables may break.

Users should be able to rely on your interface—the functionality you make public—
and not be concerned with your implementation—how you program that functionality.

DEFINITION An interface is a set of properties and functions that you want
users to access. It’s how they interact with your application. For example, the
screen, buttons, and cash dispenser on an ATM.

Who’s using your code?
Consider the spacer functions you created in chapter 7. You’ve been using them in
your code for The Crypt ever since. That’s an example of you using your own code.

It’s common for programmers to be part of a team, small or large. The team could be
working on different aspects of the same program. There’s no need for each program-
mer to create their own formatting functions, so they all use your spacer namespace.

Your team members are so impressed by your formatting prowess that they encour-
age you to share the spacer namespace more widely. You upload your code to a
community repository like Github.com (https://github.com) or npmjs.com (https://
www.npmjs.com). Other programmers can then download and use your code and
even contribute improvements and extensions.

The spacer code catches on and is developed further by a team of dedicated enthu-
siasts. It even gets its own website! It’s so popular that everyone is using the
spacer.js library.

https://github.com
https://www.npmjs.com/
https://www.npmjs.com/

175The dangers of global variables
DEFINITION An implementation is the code you use to make an application do
its job behind the scenes. It isn’t usually visible to users. For example, the
code that makes an ATM work, how it communicates with your bank, and
how it counts the cash.

For example, to implement links between places in The Crypt you might use an
exits array for exit directions and a destinations array for the places to which the
exits lead.

var exits = [];
var destinations = [];

Then, to manage adding new exits you write an addExit function.

var addExit = function (direction, destination) {
 exits.push(direction);
 destination.push(destination);
};

You expect other programmers working with your Place objects to use the addExit
function (figure 11.2).

You document the fact that addExit is part of the interface, the set of properties and
functions that users—in this case programmers—should work with.

addExit("north", kitchen); // Good—using function

But if they have access to the exits and destinations variables, they might choose to
use those variables directly, bypassing the function.

exits.push("north"); // Bad—accessing variables directly
destinations.push(kitchen);

exits
array
[]

Users should
call addExit

Interface

destinations
array
[]

Implementation

addExit

Users should NOT access
exits or destinations

YES

NO

Figure 11.2 Users should use the interface,
not the implementation.

176 CHAPTER 11 Scope: hiding information
Everything seems fine and the other programmers’ programs are working well. Then,
after reviewing your code, you decide you can improve on having two separate arrays
by using a single object.

var exits = {};
// No destinations array. No longer needed in new implementation.

To use the new way you’ve implemented exits, you update the addExit function.

var addExit = function (direction, destination) {
 exits[direction] = destination;
};

Programmers who were using the interface will see no change in their programs. But
programmers who bypassed the interface and accessed the variables directly will see
their programs break! (See figure 11.3.)

addExit("north", kitchen); // Good. Works just the same.

exits.push("north"); // ERROR! exits is not an array.
destinations.push(kitchen); // ERROR! destinations doesn’t exist.

Allowing access to all areas of our programs by using global variables blurs the line
between implementation and interface, giving users freedom to peek and tweak and
setting up programs to fail when implementation details change.

11.1.3 Naming collisions

Because our programs can be made up from lots of pieces of code written by different
teams or programmers, it’s quite possible that the same variable names will be used in
multiple places. If one programmer declares a variable name, say spacer (a name-
space of formatting functions), and then later in the program another programmer
declares the same variable name, spacer (a canine character in a console-based
space-adventure game), the second will overwrite the first—a collision! We really need
a way to protect our variables from such collisions. (Chapter 13 looks at collisions in
more detail.)

exits
array
[]

addExit still
works - the interface
is unchanged.

Interface

destinations
array
[]

Implementation

addExit

ERROR - the destinations
array no longer exists - the
implementation has changed.

YES

NO

Figure 11.3 Relying on the implementation
can lead to errors if it changes.

177The benefits of local variables
11.1.4 Crazy bugs

Programs can be thousands of lines long. Relying on global variables that may be
declared a long way away in the code and that may be peeked at and tweaked by func-
tions and instructions throughout the program leads to a fragile program. If anything
goes wrong with the program (and it probably will), it could be difficult to follow the
flow of the code and pin down the location of the problems.

11.2 The benefits of local variables
Variables declared inside the body of a function can’t be accessed outside the func-
tion. They’re called local variables; they are local to the function in which they’re
declared (figure 11.4).

Trying to access a local variable outside its function will cause an error. Listing 11.4
tries to log the value of the mountain variable to the console but produces a message
like this:

> ReferenceError: Can’t find variable: mountain

(The error you get might look slightly different. Different browsers may format the
error messages in different ways.)

var hide = function () {
 var mountain = "Devils Tower";
};

console.log(mountain);

The collection of variables outside all functions is called the global scope. Each function
creates its own local scope, its own collection of variables. In listing 11.4, the variable

Listing 11.4 A variable hidden from the console
(http://jsbin.com/bobilu/edit?js,console)

function () {

 var mountain = "Devils Tower"

}

console.log(mountain)

mountain has not been declared
outside of the function.

The local variable can’t be
accessed here. ERROR!

You can’t see
into the function

from outside

Figure 11.4 Variables declared inside a function are local to the function.

Declare the mountain
variable inside a function

Try to access the mountain
variable outside its function

http://jsbin.com/bobilu/edit?js,console

178 CHAPTER 11 Scope: hiding information

U
mo

varia
pr

it’s
mountain is not in the global scope outside the function and so an error is reported
when it’s used in the console.log statement.

 Using a variable from within the same scope causes no trouble, as shown in the fol-
lowing listing.

> Devils Tower

var show = function () {
 var mountain = "Devils Tower";
 console.log(mountain);
};

show();

Listing 11.6 combines global and local variables. You can access the global variables
anywhere, but you can only use the local variable, secretMountain, inside the show
function.

 Listing 11.6 produces the following output:

> Ben Nevis
> Devils Tower
> Ben Nevis
> ReferenceError: Can’t find variable: secretMountain

var mountain;
var show;

mountain = "Ben Nevis";

show = function () {
 var secretMountain = "Devils Tower";

 console.log(mountain);
 console.log(secretMountain);
};

show();

console.log(mountain);
console.log(secretMountain);

Listing 11.5 The variable is visible from within the function
(http://jsbin.com/raluqu/edit?js,console)

Listing 11.6 Global and local variables
(http://jsbin.com/riconi/edit?js,console)

Within the function body, pass the
mountain variable to console.log
as an argument.

Declare global variables, mountain and
show, visible throughout the program

Declare a local variable,
secretMountain, visible only
in the show function

se the
untain
ble. No
oblem,
global.

Use the secretMountain
variable. No problem, it’s in
the same local scope.

Call the show function. No problem,
show is a global variable too.

Use the mountain variable.
No problem, it’s global.Use the secretMountain variable.

Error! it’s not in the global scope.

http://jsbin.com/raluqu/edit?js,console
http://jsbin.com/riconi/edit?js,console

179Interfaces—controlling access and providing functionality
11.3 Interfaces—controlling access and providing
functionality
You want users to interact with your program on the console but you don’t want them
digging into its implementation to make changes you didn’t intend. The set of prop-
erties and actions you make available to a user is called an interface. You need a way to
provide a simple interface while hiding everything else.

 In this section you use a very simple program, a counter, as an example. In sec-
tion 11.4, you develop an interface for a quiz app and in sections 11.5, 11.6, and 11.7
you apply what you’ve learned to The Crypt.

 The following listing shows the first version of the counter program, using a global
variable to hold the current count.

var counter = 0;

var count = function () {
 counter = counter + 1;
 return counter;
};

Run the program and follow these steps at the console prompt. (Your actions show
the prompt, >, but the responses do not.)

> count()
 1
> count()
 2
> count()
 3

It seems to be working, so what’s the problem? Well, because counter is a global vari-
able, the user can change it at any time.

> counter = 99
 99
> count()
 100

You probably don’t want the user tweaking your counting variable like that. Next, you
use what you learned about local variables in section 11.2 to hide the counter variable
from the user.

Listing 11.7 A counter
(http://jsbin.com/yagese/edit?js,console)

Declare a global variable,
counter, and assign it a value

Access counter from
within a function

http://jsbin.com/yagese/edit?js,console

180 CHAPTER 11 Scope: hiding information
11.3.1 Using a function to hide variables

You want to achieve two outcomes with your counting app:

■ The counter variable is hidden from the user.
■ The count function can be seen by the user.

Listing 11.8 shows a solution. Running the program enables the following console
interaction, as required:

> count()
 1
> counter
 Can’t find variable: counter

(Again, the error your browser displays may be slightly different.)

var getCounter = function () {
 var counter = 0;

 var countUpBy1 = function () {
 counter = counter + 1;
 return counter;
 };

 return countUpBy1;
};

var count = getCounter();

Table 11.1 summarizes the key ideas as a series of problems and solutions; figure 11.5
illustrates how the returned counting function, assigned to count, still has access to
the local counter variable.

Listing 11.8 Hiding the counter variable
(http://jsbin.com/fuwuvi/edit?js,console)

Table 11.1 Problems and solutions for the counter app

Problem Solution

I want the counter variable to be
hidden from the user.

Declare the counter variable inside the getCounter function.
As a local variable, counter won’t be accessible by the user.

My function, countUpBy1, which
increments the counter, needs
access to the counter variable.

Define the countUpBy1 function inside the getCounter func-
tion as well. Because it’s inside getCounter, it will have access
to the counter variable.

I want the user to be able to call
the counting function.

Return the counting function, countUpBy1, from the get-
Counter function. It can then be assigned to a global variable.

Declare counter as a local variable
inside the getCounter function

Nest the definition of the
counting function, countUpBy1,
inside getCounter

Return the counting function
so it can be assigned

Assign the counting function
returned by getCounter to the
count variable, ready for use

http://jsbin.com/fuwuvi/edit?js,console

181Interfaces—controlling access and providing functionality
By returning a function and assigning it to the count variable (figure 11.5), you’ve given
the user a way to use the program; you’ve given them an interface—they just call get-
Counter() to obtain a counting function and then count() to increment the counter.

11.3.2 Creating multiple independent counters with getCount

In listing 11.8 you defined a function, getCounter, to create counters. Each time you
call getCounter it executes the same three steps:

1 Declare a counter variable and assign it the value 0.
2 Define a function to do the counting. The function uses the counter variable

from step 1.
3 Return the function that does the counting.

Each time you call getCounter, it declares a counter variable and defines a counting
function. If you call getCounter multiple times, don’t the counter variables interfere
with each other? No, because getCounter creates a fresh local scope each time it runs;
you get multiple copies of the counter variable, each within its own isolated collection
of variables, its own local scope.

 Listing 11.9 updates the getCounter code to create two counters. You can then
perform the following console interactions:

> climbCount()
 1
> climbCount()
 2

Return the counting function

return countUpBy1;

function ()

count = getCounter ()

The return value
replaces the
function call

var counter = 0;

var countUpBy1 = function () {
 counter = counter + 1;
 return counter;
};

count = function () {
 counter = counter + 1;
 return counter;
};

counter is a local variable

The counting function is
defined in the local scope.
It can access counter

The counting function
can still access counter

Figure 11.5 The returned function still has access to the local counter variable.

182 CHAPTER 11 Scope: hiding information
> climbCount()
 3
> peakCount()
 1
> climbCount()
 4

peakCount and climbCount do not interfere with each other.

var getCounter = function () {
 var counter = 0;

 return function () {
 counter = counter + 1;
 return counter;
 };
};

var peakCount = getCounter();
var climbCount = getCounter();

Having counter as a local variable allows you to have multiple independent counters.

11.3.3 Creating multiple independent counters
with a constructor function

If you’re going to be creating lots of counters, you could use a constructor function
to define what a counter is and does. As detailed in chapter 9, a constructor func-
tion streamlines the common process of creating objects with similar properties and
methods. You call a constructor by using the new keyword. For counters, you might
have the following:

var peaks = new Counter();
var climbs = new Counter();

The constructor will automatically create an object assigned to the special this vari-
able and return it. You can set the counting function as a property of this to make it
available outside the constructor; see listing 11.10. On the console, you might call the
counting function like this:

> peaks.count()
 1
> peaks.count();
 2
> climbs.count();
 1

Listing 11.9 Multiple counters
(http://jsbin.com/sicoce/edit?js,console)

Define the counting function
and return it in one step;
there’s no need for a variable.

Call getCounter multiple times to
create independent counters

http://jsbin.com/sicoce/edit?js,console

183Creating a quick quiz app
var Counter = function () {
 var counter = 0;

 this.count = function () {
 counter = counter + 1;
 return counter;
 };
};

var peaks = new Counter();
var climbs = new Counter();

Compare listings 11.9 and 11.10. They’re almost identical! The only difference is that
in listing 11.10 you set the counting function as a property of this rather than return-
ing it. The constructor function automatically returns the this object, so you don’t
need to. The constructor is still a function, so counter is still a local variable. Either
approach, the plain function or the constructor function, is valid. They both let you
return an interface while hiding the implementation details.

 The counter was a nice, simple example. Let’s look at something with a few more
moving parts, the quiz app. No cheating!

11.4 Creating a quick quiz app
You want to create a simple quiz app. The app should be able to do three things:

1 Display a question on the console.
2 Display the answer to the current question on the console.
3 Move to the next question in the question bank.

The start of a typical interaction on the console might look like this:

> quiz.quizMe()
 What is the highest mountain in the world?
> quiz.showMe()
 Everest
> quiz.next()
 Ok
> quiz.quizMe()
 What is the highest mountain in Scotland?

As you can see, there are three functions, quizMe, showMe, and next, that satisfy the
app’s three requirements. You also need an array of questions and answers and a vari-
able to keep track of which is the current question. Global variables, those declared
outside any functions, are said to be in the global namespace. To avoid polluting the global
namespace with all those quiz variables, you can set them as properties of a single
object. As you saw in chapter 7, when a single object is used to collect related variables
together in this way, it’s often called a namespace.

Listing 11.10 A counter constructor
(http://jsbin.com/yidomap/edit?js,console)

Assign the counting
function as a property of
the special this object

http://jsbin.com/yidomap/edit?js,console

184 CHAPTER 11 Scope: hiding information
11.4.1 Using an object as a namespace

The app will create a single global variable, quiz. All of your variables can then be set
as properties of the quiz object, as shown in listing 11.11. The array of questions and
answers starts like this:

var quiz = {
 questions: [
 {
 question: "What is the highest mountain in the world?",
 answer: "Everest"
 }
]
};

You then access the array via quiz.questions. Remember, array indexes start at 0, so
to access the first question-and-answer object, use quiz.questions[0]. To get the first
question and the first answer from the questions array, use the following:

quiz.questions[0].question;
quiz.questions[0].answer;

You keep track of the current question with the qIndex property.

var quiz = {

 questions: [

 {
 question: "What is the highest mountain in the world?",
 answer: "Everest"
 },
 {
 question: "What is the highest mountain in Scotland?",
 answer: "Ben Nevis"
 },
 {
 question: "How many munros are in Scotland?",
 answer: "284"
 }

],

 qIndex: 0,

 quizMe: function () {
 return quiz.questions[quiz.qIndex].question;
 },

 showMe: function () {
 return quiz.questions[quiz.qIndex].answer;
 },

Listing 11.11 Improving the quiz app
(http://jsbin.com/tupoto/edit?js,console)

Create an object and assign
it to the quiz variable Create an array and assign

it to the questions property
of the quiz object

Use an object for
each question-and-
answer pair

Set a question property
and an answer property for
each object in the array

Create a qIndex property
to keep track of the
current question

Use quizMe to display
the current question

Use showMe to display
the current answer

http://jsbin.com/tupoto/edit?js,console

185Creating a quick quiz app
 next: function () {
 quiz.qIndex = quiz.qIndex + 1;
 return "Ok";
 }
};

Listing 11.11 satisfies the three requirements of your app and is polite enough to use
only a single global variable, quiz. Everything it needs is within the quiz object.
Because all of the properties are accessed as properties of quiz, we say they’re in the
quiz namespace.

 Unfortunately, your app doesn’t overcome the access all areas drawback of global
variables seen in section 11.1.1. All of the properties of the quiz object are public—the
user can still steal a peak and tweak all the values.

11.4.2 Hiding the questions array

In listing 11.11, players can access all of the quiz object’s properties at the console.
This allows them to cause mischief, changing properties on a whim:

> quiz.qIndex = 300
> quiz.questions[2].answer = "282"

But you want them to use only quiz.quizMe, quiz.showMe, and quiz.next. Let’s make
the questions array and the qIndex value private by using local variables, as shown in
figure 11.6.

Use next to move to
the next question

Return the interface object

function ()

quiz = getQuiz ()

The return value
replaces the
function call

var qIndex = 0;

var questions = [];

quiz = {
 quizMe: function () {},
 showMe: function () {},
 next: function () {}
};

qIndex and questions
are local variables

The interface functions are
defined in the local scope.
They can access qIndex
and questions

The interface functions can
still access qIndex and questions

return {
 quizMe: function () {},
 showMe: function () {},
 next: function () {}
};

Figure 11.6 Use local variables to make qIndex and questions private

186 CHAPTER 11 Scope: hiding information
The next listing uses the getQuiz function to create a local scope in which to hide the
questions array and the qIndex value.

var getQuiz = function () {
 var qIndex = 0;
 var questions = [
 {
 question: "What is the highest mountain in the world?",
 answer: "Everest"
 },
 {
 question: "What is the highest mountain in Scotland?",
 answer: "Ben Nevis"
 },
 {
 question: "How many munros are in Scotland?",
 answer: "284"
 }
];

 return {
 quizMe : function () {
 return questions[qIndex].question;
 },

 showMe : function () {
 return questions[qIndex].answer;
 },

 next : function () {
 qIndex = qIndex + 1;
 return "Ok";
 }
 };
};

var quiz = getQuiz();

The program returns an object with three properties: quizMe, showMe, and next. The
last line assigns the returned object to the quiz variable. You can then use quiz to
access the three functions:

> quiz.quizMe()
 What is the highest mountain in the world?
> quiz.answer()
 Everest

The code that makes the quiz app work is called its implementation. Some of the imple-
mentation is hidden in the getQuiz function by using local variables. The object

Listing 11.12 Hiding the questions and answers
(http://jsbin.com/qahedu/edit?js,console)

Use a function to
create a local scope

Declare local variables
inside the function

Return an object with properties
for the user to access

Call the function, assigning
the object returned to the
quiz variable

http://jsbin.com/qahedu/edit?js,console

187The Crypt—hiding player info
returned by the function provides the user with an interface, a public way of interacting
with the program. The user can call the quizMe, showMe, and next functions because
they’re methods of the interface object. The user can’t access the qIndex and ques-
tions variables because they’re local to the getQuiz function.

 Figure 11.7 shows how errors are thrown when an attempt is made to access the
variables qIndex and questions at the console prompt on JS Bin. (Your error mes-
sages may be slightly different.)

11.5 The Crypt—hiding player info
In this section, and in sections 11.6 and 11.7, you update your code for The Crypt to
hide variables, properties, and functions that are part of the implementation and that
should not be spied by outside eyes. At the same time, you consider what form your
interfaces should take—what information and actions you’ll make available to players
and to programmers.

11.5.1 Our current Player constructor—everything is public

Up to this point, you haven’t made any attempt to control a user’s access to the data in a
Player object. The following listing shows the current form of your Player constructor.

var spacer = { /* visible on JS Bin */ };

var Player = function (name, health) {
 var newLine = spacer.newLine();

 this.name = name;
 this.health = health;
 this.items = [];
 this.place = null;

Listing 11.13 The Player constructor
(http://jsbin.com/dacedu/edit?js,console)

Figure 11.7 Trying to access qIndex and questions from the console now causes
errors.

Make all data available
by setting properties on
the this object

http://jsbin.com/dacedu/edit?js,console

188 CHAPTER 11 Scope: hiding information
 this.addItem = function (item) { … };

 this.getNameInfo = function () { … };

 this.getHealthInfo = function () { … };

 this.getPlaceInfo = function () { … };

 this.getItemsInfo = function () { … };

 this.getInfo = function (character) { … };

 this.showInfo = function (character) { … };
};

You set all of the player data and all of the functions as properties of the special this
object. The constructor creates the this object automatically when you call it with the
new keyword. In the snippet that follows, you call the Player constructor to create a
new player.

var player1 = new Player("Jahver", 80);

The constructor function automatically returns the this object, and you then assign
the object to the player1 variable. Because you attached everything to this within the
constructor, and this was returned and assigned to player1, you can now use player1
to access data and methods: player1.name, player1.items, player1.addItem, player1
.getInfo, and player1.showInfo are all accessible, for example.

11.5.2 An updated Player constructor—some variables are hidden

To control users’ access to player data you can use parameters and variables without
assigning values to properties of the this object. Parameters, between the opening
parentheses in a function definition, act just like variables declared within the func-
tion body. They’re local to the function and can be used anywhere within the function
but can’t be accessed by code outside the function.

var Player = function (name, health) {

 // name and health are local variables.
 // They can be used here.

 this.getHealthInfo = function () {
 // name and health can be used here.
 };
};

// name and health can NOT be used here.
// This is outside the scope of the player function.

Figure 11.8 shows the change in visibility of variables and properties from the old
Player constructor (listing 11.13) to the new (listing 11.14). The new constructor
hides most of the functions in the local scope, assigning only four functions to the spe-
cial this object as an interface.

Make all methods
available by setting
properties on the
this object

189The Crypt—hiding player info
The next listing shows the changes in code; local variables, declared with var, are used
to prevent direct access to a player’s data.

var spacer = { /* visible on JS Bin */ };

var Player = function (name, health) {
 var newLine = spacer.newLine();
 var items = [];
 var place = null;

 var getNameInfo = function () {
 return name;
 };

 var getHealthInfo = function () {
 return "(" + health + ")";
 };

 var getItemsInfo = function () {
 var itemsString = "Items:" + newLine;

 items.forEach(function (item, i) {
 itemsString += " - " + item + newLine;
 });

Listing 11.14 Hiding player info in the constructor
(http://jsbin.com/fuyaca/edit?js,console)

newLine

local variables

name health

items place

addItem

getNameInfo getHealthInfo

getPlaceInfo getItemsInfo

getInfo

showInfo

this

Local variables are private

Properties of this are public

Old Player constructor

addItem showInfo

setPlace getPlace

name health

items place

getNameInfo getHealthInfo

getTitleInfo getItemsInfo

getInfo

newLine

local variables

this

New Player constructor

Figure 11.8 Hiding variables and functions in the local scope of the constructor function

Create private variables
with parameters and
the var keyword

Make these
functions
private—they’re
for internal use.

http://jsbin.com/fuyaca/edit?js,console

190 CHAPTER 11 Scope: hiding information
 return itemsString;
 };

 var getTitleInfo = function () {
 return getNameInfo() + " " + getHealthInfo();
 };

 var getInfo = function () {
 var info = spacer.box(getTitleInfo(), 40, "*");
 info += " " + getItemsInfo();
 info += spacer.line(40, "*");
 info += newLine;

 return info;
 };

 this.addItem = function (item) {
 items.push(item);
 };

 this.setPlace = function (destination) {
 place = destination;
 };

 this.getPlace = function () {
 return place;
 };

 this.showInfo = function (character) {
 console.log(getInfo(character));
 };
};

The properties and functions you don’t want to be seen outside the constructor you
assign to local variables. The methods you want to make visible you assign as proper-
ties of the this object.

var items = []; // Keep private

this.showInfo = function () { }; // Make public

The setPlace and getPlace methods give users access to the place variable. Why
bother using a variable to make place private if you’re only going to provide meth-
ods to access it anyway? They provide an interface and allow you to hide the imple-
mentation and also let you mediate access. When the setPlace method is called,
you can check that the destination argument is a valid place before assigning it to
the place variable. When the getPlace method is called, you can check that the
user is allowed to get access before returning the place. You haven’t put those extra
checks in place yet, but your two methods are ready for when you need to add
any conditions.

 You’ve also simplified the information displayed by showInfo so that it no longer
includes the current place. Place objects have their own showInfo method, so there’s

Make these
functions
private—they’re
for internal use.

Add methods to
manage access to
the place variable

191The Crypt—hiding place info
no need to double up and display place details as part of a player’s information. When
you display player info on the console, it now looks like this:

**
* Kandra (50) *
**
 Items:
 - The Sword of Doom
**

The player’s health is shown in parentheses after their name. To show information
about a player’s current location, you can call getPlace to retrieve the place object
and then call the place object’s showInfo method:

var place = player.getPlace();
place.showInfo();

11.6 The Crypt—hiding place info
You now do for the Place constructor what you did for the Player constructor. You
hide the data and provide methods that access it as required. The next listing shows
the structure of the previous Place constructor, from chapter 10, with data and meth-
ods set on the this object.

var spacer = { /* visible on JS Bin */ };

var Place = function (title, description) {
 var newLine = spacer.newLine();

 this.title = title;
 this.description = description;
 this.items = [];
 this.exits = {};

 this.getItemsInfo = function () { };
 this.getExitsInfo = function () { };
 this.getTitleInfo = function () { };
 this.getInfo = function () { };

 this.showInfo = function () { };
 this.addItem = function (item) { };
 this.addExit = function (direction, exit) { };
};

The following listing shows your updated version of the Place constructor, using
parameters and variables to hide data, a new getExit function to return the destina-
tion for a specified direction, and a new getLastItem method to return the last item
from the items array.

Listing 11.15 The Place constructor
(http://jsbin.com/kavane/edit?js,console)

Use properties to
hold place data

Create functions
that build strings
of information

Create functions
that update place
data and display it

http://jsbin.com/kavane/edit?js,console

192 CHAPTER 11 Scope: hiding information
var spacer = { /* visible on JS Bin */ };

var Place = function (title, description) {
 var newLine = spacer.newLine();
 var items = [];
 var exits = {};

 var getItemsInfo = function () {
 var itemsString = "Items: " + newLine;
 items.forEach(function (item) {
 itemsString += " - " + item;
 itemsString += newLine;
 });
 return itemsString;
 };

 var getExitsInfo = function () {
 var exitsString = "Exits from " + title;
 exitsString += ":" + newLine;

 Object.keys(exits).forEach(function (key) {
 exitsString += " - " + key;
 exitsString += newLine;
 });

 return exitsString;
 };

 var getTitleInfo = function () {
 return spacer.box(title, title.length + 4, "=");
 };

 var getInfo = function () {
 var infoString = getTitleInfo();
 infoString += description;
 infoString += newLine + newLine;
 infoString += getItemsInfo() + newLine;
 infoString += getExitsInfo();
 infoString += spacer.line(40, "=") + newLine;
 return infoString;
 };

 this.showInfo = function () {
 console.log(getInfo());
 };

 this.addItem = function (item) {
 items.push(item);
 };

 this.addExit = function (direction, exit) {
 exits[direction] = exit;
 };

Listing 11.16 Hiding place info in the constructor
(http://jsbin.com/riviga/edit?js,console)

Create private variables
with parameters and
the var keyword

Make these
functions private.
They’re for
internal use.

http://jsbin.com/riviga/edit?js,console

193The Crypt—user interaction
 this.getExit = function (direction) {
 return exits[direction];
 };

 this.getLastItem = function () {
 return items.pop();
 };
};

You’ve hidden certain properties and functions in the Player and Place constructors
while making a small set of methods—your interface—visible via the this object.
Other parts of your program that use the constructors (or programmers who may use
your code in their own adventure game programs) can use only the methods in the
interface.

 For players typing commands at a console, you’ll preserve their enjoyment of the
game by preventing them from stumbling inadvertently over important game values
they find they can change. (Cheating is such a nasty word.) You’ll present the players
with a small, simple set of actions they can take to explore, collect, smite, and destroy—
whatever is appropriate as they journey through The Crypt.

11.7 The Crypt—user interaction
In chapter 10 you created a version of The Crypt that let the player move from place to
place and pick up items they found. Unfortunately, you polluted the global
namespace with all of your variables. Don’t beat yourself up about it; you were young
and naïve. Now you have a way to hide the implementation from the user.

 Listing 11.17 shows an outline of the current implementation; the full version is on
JS Bin. It’s almost the same as the version from chapter 10 but uses the getPlace and
setPlace player methods and the getExit and getLastItem place methods from this
chapter’s constructor updates. The code that uses them is shown in full.

// The spacer namespace
var spacer = { /* formatting functions */ };

// Constructors
var Player = function (name, health) { … };
var Place = function (title, description) { … };

// Game controls
var render = function () {
 console.clear();
 player.getPlace().showInfo();
 player.showInfo();
};

var go = function (direction) {
 var place = player.getPlace();
 var destination = place.getExit(direction);

Listing 11.17 Lots of global variables in the game
(http://jsbin.com/dateqe/edit?js,console)

Add a public method to
give access to destinations

Add a public method to grab the
last item from the items array

http://jsbin.com/dateqe/edit?js,console

194 CHAPTER 11 Scope: hiding information
 player.setPlace(destination);
 render();
 return "";
};

var get = function () {
 var place = player.getPlace();
 var item = place.getLastItem();
 player.addItem(item);
 render();
 return "";
};

// Map
var kitchen = new Place("The Kitchen", "You are in a kitchen…");
var library = new Place("The Old Library", "You are in a library…");

kitchen.addItem("a piece of cheese");
library.addItem("a rusty key");

kitchen.addExit("south", library);
library.addExit("north", kitchen);

// Game initialization
var player = new Player("Kandra", 50);
player.addItem("The Sword of Doom");
player.setPlace(kitchen);

render();

Notice all the global variables—the spacer namespace, the Player and Place con-
structors, the game control functions, all the places, and the player—are assigned to
variables outside any functions. Smelly pollution. Only the game control functions, go
and get, need to be available to players. You can hide the rest.

11.7.1 The interface—go and get

There are only two actions you want the user to take for now:

game.go("north"); // Move; e.g. to the place north of the current location
game.get(); // Pick up an item from the current location

To hide the implementation, you wrap the game code inside a function. Then, to
allow the user to take the two desired actions and no more, you return an interface
object from the function, with the two methods:

return {
 go: function (direction) {
 // Move to a new place
 },

 get: function () {
 // Pick up an item
 }
};

195The Crypt—user interaction

fun

th

Sh
in
The interface methods use the functionality of player and place objects to do their
jobs, with those objects created by their respective constructor functions.

11.7.2 Hiding the implementation

To hide the rest of the code from the users, you wrap it in a function to create a local
scope. Only your interface object is returned. The listing that follows shows highlights
from the updated code. The full listing is available on JS Bin.

var getGame = function () {

 var spacer = { … };
 var Player = function (name, health) { … };
 var Place = function (title, description) { … };

 var render = function () { … };

 var kitchen = new Place("The Kitchen", "You are in a kitchen…");
 var library = new Place("The Old Library", "You are in a library…");
 kitchen.addItem("a piece of cheese");
 library.addItem("a rusty key");
 kitchen.addExit("south", library);
 library.addExit("north", kitchen);

 var player = new Player("Kandra", 50);
 player.addItem("The Sword of Doom");
 player.setPlace(kitchen);

 render();

 return {
 go: function (direction) {
 var place = player.getPlace();
 var destination = place.getExit(direction);
 player.setPlace(destination);
 render();
 return "";
 },

 get: function () {
 var place = player.getPlace();
 var item = place.getLastItem();
 player.addItem(item);
 render();
 return "";
 }
 };
};

var game = getGame();

Listing 11.18 Letting users interact with the game via an interface object
(http://jsbin.com/yuporu/edit?js,console)

Wrap the implementation in a
function to create a local scope

Include spacer and
the Player and Place
constructor functions

Include a
ction for
updating
e console

Create a player—yep,
it’s local—and give
them a starting place.

ow initial
fo on the

console Return an object to
act as the interface;
players can access
its methods.

Call the getGame function to
return the interface object and
assign it to the game variable

http://jsbin.com/yuporu/edit?js,console

196 CHAPTER 11 Scope: hiding information
The last statement of the listing calls the getGame function. The function executes and
then returns the interface object that has the go and get methods. The statement
assigns the interface object to the game variable. The player can access the go and get
methods via the game variable by using dot notation:

game.get();
game.go("east");

The player can’t access any other variables or functions from the game. Your work is
done! At least for this chapter.

 The wrap-and-return process of wrapping code in a function from which you then
return an interface object is called the module pattern. It’s a common way of separating
the interface from the implementation and helps package your code for portability
and reuse. You’ll see it a lot from now on, particularly in chapter 13 when you investi-
gate importing modules by using HTML script tags. Before you get to that, you have
some decisions to make in chapter 12. If you’re ready, read on; else take a break, chill
out, try the Further Adventures, and gird your loins.

11.8 Summary
■ Reduce the number of global variables in your programs. Global variables are

variables declared outside all functions. They can be accessed anywhere in the
program but pollute the global namespace, expose your implementation, can
create naming collisions, and can help introduce hard-to-find bugs:

 var myGlobal = "Look at me";

 var useGlobal = function () {
 console.log("I can see the global: " + myGlobal);
 };

 console.log("I too can see the global: " + myGlobal);

■ Reduce the number of global variables by collecting related variables and func-
tions as properties of a single object. Such an object is often called a namespace:

 var singleGlobal = {
 method1 : function () { … },
 method2 : function () { … }
 };

■ Wrap code in functions to create local scopes, collections of local variables:

 var getGame = function () {
 var myLocal = "A local scope, for local people.";
 console.log(myLocal); // Displays message
 };

 console.log(myLocal); // ERROR! myLocal is not declared here.
 // It is not in the global scope.

197Summary
■ Wrap code in functions to make variables private, hide your implementation,
avoid naming collisions, and reduce the risk of hard-to-find bugs.

■ Return public interfaces from functions to clearly define the properties and
methods you expect users to access (the module pattern).

■ Return a single function:

 var getCounter = function () {
 var counter = 0; // Private

 return function () { … };
 };

 var count = getCounter();

■ Return an object:

 var getGame = function () {
 // Game implementation

 return {
 // Interface methods
 };
 };

 var game = getGame();

■ Remember that constructor functions create a local scope, just like any other
functions. The special this variable is automatically returned. It acts as the pub-
lic interface:

 var Counter = function () {
 var counter = 0; // Private

 this.count = function () { … };
 };

Conditions:
choosing code to run
So far, all of your code follows a single path. When you call a function, every state-
ment in the function body is executed. You’ve managed to get a lot done and cov-
ered quite a few core ideas in JavaScript but your programs have lacked flexibility;
they haven’t been able to decide whether or not to execute blocks of code.

 In this chapter you learn how to run code only when specified conditions are met.
Suddenly, your programs can branch, providing options, flexibility, and richness. You
can increase a player’s score if they splat a kumquat, move to a new location if the
user specifies a valid direction, or post a tweet if it’s less than 141 characters long.

This chapter covers
■ Comparing values with comparison operators
■ Checking conditions that are true or false
■ The if statement—running code only if a

condition is met
■ The else clause—running code when a

condition is not met
■ Making sure user input won’t break your code
■ Generating random numbers with

Math.random()
198

199Conditional execution of code
 If you want to find out how your programs can make decisions, read on, else, …
well, read on anyway. You really need to know this stuff!

12.1 Conditional execution of code
To start, create a simple program that asks the user to guess a secret number. If they
guess correctly, the program says, “Well done!” An interaction at the console might
look like this:

> guess(2)
 undefined
> guess(8)
 Well done!
 undefined

What’s with the ugly appearances of undefined? When you call a function at the con-
sole, its code is executed and then its return value is displayed. The guess function in
the following listing doesn’t include a return statement so it automatically returns
undefined.

var secret = 8;

var guess = function (userNumber) {
 if (userNumber === secret) {
 console.log("Well done!");
 }
};

The guess function checks to see if the user’s number is equal to the secret number. It
uses the strict equality operator, ===, and an if statement so that you display the “Well
done!” message only if the numbers match. The following sections look at the strict
equality operator and the if statement in more detail and introduce the else clause.

12.1.1 The strict equality operator, ===

The strict equality operator compares two values. If they’re equal it returns true; if
they’re not equal it returns false. You can test it at the console:

> 2 === 8
 false
> 8 === 8
 true
> 8 === "8"
 false
> "8" === "8"
 true

Listing 12.1 Guess the number
http://jsbin.com/feholi/edit?js,console

Assign a number to
the secret variable

Define a function that accepts
the user’s number and assign
it to the guess variable

Check if the user’s number
matches the secret number

Log “Well done!” to the
console if the numbers match

http://jsbin.com/feholi/edit?js,console

200 CHAPTER 12 Conditions: choosing code to run
In the third example, you can see that the strict equality operator doesn’t consider the
number 8 and the string "8" to be equal. That’s because numbers and strings are dif-
ferent types of data. The values true and false are a third type of data; they’re called
boolean values. In fact, true and false are the only possible boolean values. Boolean
values are useful when deciding what a program should do next; for example, by
using an if statement.

12.1.2 The if statement

To execute a block of code only when a specified condition is met, you use an if
statement.

if (condition) {
 // Code to execute
}

If the condition in parentheses evaluates to true, then JavaScript executes the state-
ments in the code block between the curly braces. If the condition evaluates to false,
then JavaScript skips the code block. Notice there’s no semicolon after the curly
braces at the end of an if statement.

 Listing 12.1 used the strict equality operator to return a true or false value for
the condition.

if (userNumber === secret) {
 console.log("Well done!");
}

The code logs the “Well done!” message to the console only if the value of user-
Number is equal to the value of secret. For example, say the secret is 8 and the user
chooses 2:

if (2 === 8) { // The condition is false.
 console.log("Well done!"); // Not executed
}

If the user chooses 8, the if statement becomes

if (8 === 8) { // The condition is true.
 console.log("Well done!"); // This is executed.
}

12.1.3 The else clause

Sometimes we want different code to be executed if the condition in an if statement
evaluates to false. We can make that happen by appending an else clause to the if
statement (figure 12.1).

201Conditional execution of code
From listing 12.2:

if (userNumber === secret) {
 console.log("Well done!");
} else {
 console.log("Unlucky, try again.");
}

If userNumber and secret are equal, JavaScript displays “Well done!” Otherwise, it dis-
plays “Unlucky, try again.” Notice there’s no semicolon after the curly braces at the
end of an else clause. Once again, say the secret is 8 and the user chooses 2:

if (2 === 8) { // The condition is false.
 console.log("Well done!"); // Not executed.
} else {
 console.log("Unlucky, try again."); // This is executed.
}

If the user chooses 8, the if statement becomes

if (8 === 8) { // The condition is true.
 console.log("Well done!"); // This is executed.
} else {
 console.log("Unlucky, try again."); // Not executed.
}

A guessing game interaction at the console might now look something like this:

> guess(2)
 Unlucky, try again.
 undefined
> guess(8)
 Well done!
 undefined

userNumber === secret

true

false

 > Well done!

 > Unlucky, try again.

Which code is executed
depends on the value
of the condition,
true or false

if (userNumber === secret) {

 console.log("Well done!");

} else {

 console.log("Unlucky, try again.");

}

Figure 12.1 Executing code depending on the value of a condition, with if and else

202 CHAPTER 12 Conditions: choosing code to run
var secret = 8;

var guess = function (userNumber) {
 if (userNumber === secret) {

 console.log("Well done!");

 } else {

 console.log("Unlucky, try again.");

 }
};

Next, you use local variables to make secret secret.

12.1.4 Hide the secret number inside a function

In listing 12.2, both the secret and the guess variables are declared outside any func-
tion. You saw in chapter 11 how that makes them global variables, accessible at the
console and throughout the program. That’s great for guess—you want users to be
able to guess numbers—but it’s a disaster for secret—users can peek and tweak its
value at will. If you run the code in listing 12.2, you can then perform the following
actions at the console:

> secret // You can access secret. It’s a global variable.
 8
> guess(8)
 Well done!
 undefined
> secret = 20 // You can reset secret to whatever you want.
 20
> guess(20)
 Well done!
 undefined

That’s not much of a guessing game!
 Chapter 11 also discussed how functions are used in JavaScript to create a local

scope, a collection of variables accessible only within the function. Listing 12.3 uses
the getGuesser function to hide the secret number. The function returned by get-
Guesser is assigned to the guess variable (figure 12.2).

guess is a global variable, available at the console:

> guess(2)
 Unlucky, try again
 undefined

Listing 12.2 Guess the number—the else clause
(http://jsbin.com/nakosi/edit?js,console)

Add an if statement with the
condition to check in parentheses

Execute this code only
if the condition is true

Add an else clause for
when the condition is false

Execute this code only if
the condition is false

http://jsbin.com/nakosi/edit?js,console

203Conditional execution of code

Hid
s

nu
w

the
var getGuesser = function () {
 var secret = 8;

 return function (userNumber) {
 if (userNumber === secret) {
 console.log("Well done!");
 } else {
 console.log("Unlucky, try again.");
 }
 };
};

var guess = getGuesser();

The function assigned to getGuesser creates a local scope that lets you protect the
secret variable from the user. It returns another function that lets the user guess a
number. That function is assigned to the guess variable. Because the guess-checking
function is defined in the local scope created by the getGuesser function, it has access
to the secret variable and is able to do its checking.

Listing 12.3 Guess the number—using local scope
(http://jsbin.com/hotife/edit?js,console)

Return the function

function ()

guess = getGuesser ()

The return value
replaces the
function call

var secret = 8;

guess = function (userNumber) {
 if (userNumber === secret) {
 console.log("Well done!");
 } else {
 console.log("Unlucky, try again.");
 }
};

secret is a
local variable

The returned function is
defined in the local scope.
It can access secret

The returned function can
still access secret

return function (userNumber) {
 if (userNumber === secret) {
 console.log("Well done!");
 } else {
 console.log("Unlucky, try again.");
 }
};

Figure 12.2 The function returned by getGuesser is assigned to the guess variable.

Use a function to
create a local scope

e the
ecret
mber
ithin

 local
scope

Return a function the user
can use to guess the number

Check to see if the user’s guess
is equal to the secret number

Log “Well done!” only if
the numbers match

… otherwise log
“Unlucky, try again”

Call getGuesser and assign the function
it returns to the guess variable

http://jsbin.com/hotife/edit?js,console

204 CHAPTER 12 Conditions: choosing code to run
 You have a guessing game but it’s always the same secret number. Really, it’s a
not-so-secret number! Let’s make use of a couple of methods from JavaScript’s Math
namespace to inject some extra mystery into our guessing game.

12.2 Generating random numbers with Math.random()
The Math namespace provides you with a random method for generating random
numbers. It always returns a number greater than or equal to 0 and less than 1. Give it
a whirl at the console prompt:

> Math.random()
 0.7265986735001206
> Math.random()
 0.07281153951771557
> Math.random()
 0.552000432042405

Obviously, your numbers will be different because they’re random! Unless you’re really
into guessing games and have a lot of free time, those random numbers are probably
a bit too tricky for your purposes.

 To tame the numbers, scale them up to fall in a range you want and then convert
them to whole numbers (integers). Because they start off less than 1, multiplying by
10 will make them less than 10. Here’s a series of assignments using Math.random:

var number = Math.random(); // 0 <= number < 1

To scale the possible numbers, multiply:

var number = Math.random() * 10; // 0 <= number < 10

To shift the possible numbers up or down, add or subtract:

var number = Math.random() + 1; // 1 <= number < 2

To scale and then shift, multiply and then add:

var number = Math.random() * 10 + 1; // 1 <= number < 11

Notice for the last assignment the numbers will be between 1 and 11; they can equal 1
but will be less than 11. The <= symbol means less than or equal to, whereas the < sym-
bol means less than. The inequality 0 <= number < 1 means the number is between 0
and 1 and can equal 0 but not 1 (see section 12.3.1).

 Okay, so you’ve scaled up the random numbers, but they’re still a trifle tricky. At
the console you can see the kind of numbers you’re generating:

> Math.random() * 10 + 1
 3.2726867394521832
> Math.random() * 10 + 1
 9.840337357949466

205Generating random numbers with Math.random()

loor

The last step is to lose the decimal fraction part of each number, to round the num-
bers down to integers. For that you use the floor method of the Math namespace.

> Math.floor(3.2726867394521832)
 3
> Math.floor(9.840337357949466)
 9

The floor method always rounds down, whatever the decimals are: 10.00001, 10.2, 10.5,
10.8, and 10.99999 are all rounded down to 10, for example. You use floor to get an
expression that returns a random integer between 1 and 10 inclusive:

var number = Math.random() * 10 + 1 // 1 <= number < 11
var number = Math.floor(Math.random() * 10 + 1) // 1 <= number <= 10

There’s also a Math.ceil method that always rounds up and a Math.round method
that rounds up or down, following the usual rules for mathematical rounding. More
information about JavaScript’s Math object can be found on the Get Programming with
JavaScript website: http://www.room51.co.uk/js/math.html.

 Listing 12.4 puts the Math methods into practice. The guess function now returns
strings rather than logging them; the console automatically displays the return values,
tidying up the interactions:

> guess(2)
 Unlucky, try again.
> guess(8)
 Unlucky, try again.
> guess(7)
 Well done!

var getGuesser = function () {
 var secret = Math.floor(Math.random() * 10 + 1);

 return function (userNumber) {

 if (userNumber === secret) {

 return "Well done!";

 } else {

 return "Unlucky, try again.";

 }
 };
};
var guess = getGuesser();

Listing 12.4 Guess the random number
(http://jsbin.com/mezowa/edit?js,console)

Use Math.random and Math.f
to generate a whole number
between 1 and 10 inclusive

Use an if statement to execute commands
only if the condition evaluates to true

The return value will be displayed on
the console when the function is called.

Include an else clause with
commands to be executed if
the condition evaluates to false

Call getGuesser and assign the function
that’s returned to the guess variable

http://www.room51.co.uk/js/math.html
http://jsbin.com/mezowa/edit?js,console

206 CHAPTER 12 Conditions: choosing code to run
Using random numbers has made your guessing game more interesting. But there
isn’t a great deal of strategy involved; it’s just straight guessing. The game could be
improved by giving better feedback after each guess.

12.3 Further conditions with else if
By receiving better feedback for each guess, users can develop more efficient strate-
gies when battling your guessing game. And strategy games are always more fun than
guessing games. If a user’s guess is incorrect, tell them if it’s too high or too low.

> guess(2)
 Too low!
> guess(7)
 Too high!
> guess(5)
 Well done!

Figure 12.3 shows the conditions used to produce the three possible types of feedback
for a user’s guess.

The following listing shows how an extra if statement can be used to differentiate
between the two types of incorrect answer.

var getGuesser = function () {
 var secret = Math.floor(Math.random() * 10 + 1);

 return function (userNumber) {
 if (userNumber === secret) {
 return "Well done!";

Listing 12.5 Higher or lower
(http://jsbin.com/cixeju/edit?js,console)

userNumber === secret

true

false

 > Well done!

userNumber > secret

true

false

 > Too high!

 > Too low!

Figure 12.3 Nesting
conditions can provide
multiple options.

Use a condition to check
if the user has guessed
the secret number

http://jsbin.com/cixeju/edit?js,console

207Further conditions with else if
 } else {
 if (userNumber > secret) {
 return "Too high!";
 } else {
 return "Too low!";
 }
 }
 };
};

var guess = getGuesser();

If a code block contains a single statement, JavaScript lets us leave out the curly
braces; the following three statements are equivalent:

if (userNumber === secret) {
 return "Well done!";
}

if (userNumber === secret)
 return "Well done!";

if (userName === secret) return "Well done!";

As if and else clauses get more complicated and when code gets updated over time,
if you leave out the curly braces it can sometimes be hard to spot which statements go
with which clauses. Many programmers (including me) recommend that you always
use curly braces for the code blocks (apart from the case of nested if statements, as
shown shortly). Others aren’t so strict. Ultimately, it can come down to personal (or
team) preferences. For now, I’d go with whatever you find easiest to understand.

 An if statement, even with an else clause, counts as one statement. When an else
clause contains a single if statement, it’s common to leave out the curly braces. The
following three code snippets are equivalent:

 First, the code as shown in listing 12.5. The nested if-else statement is inside a
pair of curly braces.

else { // Curly braces at start
 if (userNumber > secret) {
 return "Too high!";
 } else {
 return "Too low!";
 }
} // Curly braces at end

The inner if-else is a single statement, so it doesn’t need to be wrapped in curly
braces.

else // No curly braces
 if (userNumber > secret) {
 return "Too high!";

Execute the first else clause
if the guess is incorrect

Check if the user’s guess is
greater than the secret number

Include code for when the
incorrect guess is not greater
than the secret number

208 CHAPTER 12 Conditions: choosing code to run
 } else {
 return "Too low!";
 }
 // No curly braces

And finally, because JavaScript mostly ignores spaces and tab characters, the inner if-
else statement can be moved to follow on from the initial else.

else if (userNumber > secret) { // if moved next to else
 return "Too high!";
} else {
 return "Too low!";
}

The last version is the format most commonly seen. The next listing shows the neater
else-if block in context.

var getGuesser = function () {
 var secret = Math.floor(Math.random() * 10 + 1);

 return function (userNumber) {
 if (userNumber === secret) {
 return "Well done!";
 } else if (userNumber > secret) {
 return "Too high!";
 } else {
 return "Too low!";
 }
 };
};

var guess = getGuesser();

The second if statement is shown in bold for comparison with listing 12.5. You’ve
removed the curly braces for the first else block and moved the second if next to the
first else. Listing 12.6 shows the most common way of writing else-if blocks. If you
prefer the longer version in listing 12.5, feel free to stick with it; there are no Block
Judges waiting to sentence you for syntax abuse. (At this point the author is called away to
deal with a ruckus—some very loud banging on the door to his apartment … it’s The Law!)

 All possible outcomes are catered for in the guessing game; the guess could be cor-
rect or too high or too low. If the guess is not correct and it’s not too high, then it
must be too low.

12.3.1 Comparison operators

Listings 12.5 and 12.6 both make use of the greater than operator, >. It operates on two
values and returns true or false. It’s one of a family of operators that compare two
values. Some of the operators are shown in table 12.1.

Listing 12.6 A neater else-if block
(http://jsbin.com/cidoru/edit?js,console)

http://jsbin.com/cidoru/edit?js,console

209Further conditions with else if
Because the operators in table 12.1 return true or false, they can be used in the con-
dition for if statements. You may be wondering about the strict part of the strict
equality operator—something we’ll be sticking to throughout the book—and whether
there’s a non-strict version. Yes, there is. For non-strict equality you can use ==. See the
“Loose equality and coercion” sidebar.

Now, obviously, guessing numbers is great fun, but you can learn more from a fact-
based quiz like the one you’ve considered a few times earlier in the book. Adding the
ability to check your answers will help raise the quiz app above a mere trivial pursuit.

Table 12.1 Comparison operators

Operator Name Example Evaluates to

> Greater than 5 > 3
3 > 10
7 > 7

true
false
false

>= Greater than or equal to 5 >= 3
3 >= 10
7 >= 7

true
false
true

< Less than 5 < 3
3 < 10
7 < 7

false
true
false

<= Less than or equal to 5 <= 3
3 <= 10
7 <= 7

false
true
true

=== Strictly equal to 5 === 3
7 === 7
7 === "7"

false
true
false

!== Not strictly equal to 5 !== 3
7 !== 7
7 !== "7"

true
false
true

Loose equality and coercion
The loose equality operator, ==, is allowed to coerce values into different types in
order to compare them for equality.

Coercion is the process of converting a value from one type to another, for example,
from a string to a number.

So, whereas the strict comparison 7 === "7" evaluates to false, because one value
is a number and the other is a string, the loose comparison 7 == "7" evaluates to
true, because the string is first coerced to a number and 7 == 7 is true.

The rules for coercion are beyond the scope of this book (although ignore people who
say they’re not worth learning), and we’ll stick to strict equality comparisons.

210 CHAPTER 12 Conditions: choosing code to run
12.4 Checking answers in the quiz app
Now that you can check conditions in an if statement, you’re finally able to keep a
score for the number of questions a user gets right in the quiz program. A typical con-
sole interaction could be this:

> quiz.quizMe()
 What is the highest mountain in the world?
> quiz.submit("Everest")
 Correct!
 Your score is 1 out of 1
> quiz.quizMe()
 What is the highest mountain in Scotland?
> quiz.submit("Snowdon")
 No, the answer is Ben Nevis
 You have finished the quiz
 Your score is 1 out of 2

The code for the quiz program is shown in the next listing. The getQuiz function con-
tains the implementation of the quiz and returns an interface object with only two
methods, quizMe and submit. You take a good look at how the program works after
the listing.

var getQuiz = function () {
 var score = 0,
 qIndex = 0,
 inPlay = true,
 questions,
 next,
 getQuestion,
 checkAnswer,
 submit;

 questions = [
 {
 question: "What is the highest mountain in the world?",
 answer: "Everest"
 },
 {
 question: "What is the highest mountain in Scotland?",
 answer: "Ben Nevis"
 }
];

 getQuestion = function () {
 if (inPlay) {
 return questions[qIndex].question;
 } else {
 return "You have finished the quiz.";
 }
 };

Listing 12.7 Checking quiz answers
(http://jsbin.com/hidogo/edit?js,console)

Use a single var
keyword to declare all
the variables in the
getQuiz function

Define the getQuestion
method to return the
current question

http://jsbin.com/hidogo/edit?js,console

211Checking answers in the quiz app

ch
metho

if
is c

updat
 next = function () {
 qIndex = qIndex + 1;

 if (qIndex >= questions.length) {
 inPlay = false;
 console.log("You have finished the quiz.");
 }
 };

 checkAnswer = function (userAnswer) {
 if (userAnswer === questions[qIndex].answer) {
 console.log("Correct!");
 score = score + 1;
 } else {
 console.log("No, the answer is " + questions[qIndex].answer);
 }
 };

 submit = function (userAnswer) {
 var message = "You have finished the quiz.";

 if (inPlay) {
 checkAnswer(userAnswer);
 next();
 message = "Your score is " + score + " out of " + qIndex;
 }

 return message;
 };

 return {
 quizMe: getQuestion,
 submit: submit
 };
};

var quiz = getQuiz();

Your new quiz program has a number of moving parts; let’s break it down into
smaller pieces.

12.4.1 Multiple declarations with a single var keyword

Up until now you’ve been using a var keyword for each variable you’ve declared:

var score;
var getQuestion;
var next;
var submit;

Define the next method
to move to the next
question and check if
any questions remain

Define the
eckAnswer
d to check

the answer
orrect and
e the score

Define the
submit
method to
handle the
user’s
submitted
answer

Return an interface
object with two methods,
quizMe and submit

Call the getQuiz function and
assign the interface object it
returns to the quiz variable

212 CHAPTER 12 Conditions: choosing code to run
JavaScript allows you to declare a list of variables with a single var keyword. Commas
separate the variables, with a semicolon ending the list. The previous declarations can
be rewritten in the following shorter form:

var score,
 getQuestion,
 next,
 submit;

You could even declare the variables on a single line:

var score, getQuestion, next, submit;

Most programmers prefer one variable per line. You can include assignments too:

var score = 0,
 getQuestion,
 next,
 submit = function (userAnswer) {
 // function body
 };

The aim is to make sure all variables are declared and the code is easy to read and
understand. The style in listing 12.7 is what I tend to prefer; I find it slightly easier to
read and it’s slightly less typing. Some programmers declare each variable on its own
line with a var keyword, just as we’ve been doing in our listings up until now; it’s eas-
ier to cut and paste variables if each has its own var keyword. It’s not worth worrying
about—you’ll probably settle on one style over time.

12.4.2 Displaying a question

The getQuestion function returns a question from the questions array. It uses the
qIndex variable to pick the current question-and-answer object from the array. It
returns the question property of the question-and-answer object.

return questions[qIndex].question;

But it returns the question only if the quiz is still in progress. Otherwise, it returns a
string to say the quiz is finished:

return "You have finished the quiz.";

The program uses the inPlay variable to flag when the quiz is in progress and when it
has finished. The inPlay variable has a value of true while the quiz is in progress and
false when it has finished. The getQuestion function uses the inPlay variable as the
condition in an if statement:

if (inPlay) {
 return questions[qIndex].question;

213Checking answers in the quiz app
} else {
 return "You have finished the quiz.";
}

When inPlay is true, the question is returned. When inPlay is false, the message is
returned. (Remember, when you call a function at the console prompt, the console
automatically displays the return value.)

12.4.3 Moving to the next question

The program calls the next function to move from one question to the next. It moves
by incrementing the qIndex variable.

qIndex = qIndex + 1;

The program stores the index of the current element in the questions array in qIn-
dex. Remember that the array index is zero based, so for an array of length 4 the
index could be 0, 1, 2, or 3. An index of 4 would be past the end of the array (3 is the
last index). In general, if the index is greater than or equal to the length of the array,
you’re past the end of the array. All arrays have a length property. In the quiz, it rep-
resents the number of questions.

 The next function checks the index to see if it is past the last question:

if (qIndex >= questions.length)

If the index is past the end of the array, then all the questions have been asked and the
quiz is over, so inPlay is set to false.

if (qIndex >= questions.length) {
 inPlay = false;
 console.log("You have finished the quiz.");
}

12.4.4 Checking the player’s answer

The checkAnswer function is straightforward. If the player’s submitted answer is equal
to the current answer from the questions array, the player’s score is incremented.
Otherwise, the correct answer is displayed.

if (userAnswer === questions[qIndex].answer) {
 console.log("Correct!");
 score = score + 1;
} else {
 console.log("No, the answer is " + questions[qIndex].answer);
}

214 CHAPTER 12 Conditions: choosing code to run
12.4.5 Handling a player’s answer

The submit function orchestrates what happens when a player submits an answer. It
returns either a message with the player’s score or a message to say the quiz is over.

Your score is 1 out of 2 // If inPlay is true

You have finished the quiz. // If inPlay is false

If the quiz is still in progress, submit calls two other functions, checkAnswer and next.
Each will execute its code in turn. You’re using the functions to run code on demand.

if (inPlay) {
 checkAnswer(userAnswer);
 next();
 message = "Your score is " + score + " out of " + qIndex;
}

12.4.6 Returning the interface object

You’ve kept the interface object returned by getQuiz simple. It has no implementa-
tion code of its own. You assign its two properties functions from within the local
scope of getQuiz.

 return {
 quizMe: getQuestion,
 submit: submit
 };

As discussed in chapter 11, the interface object allows you to maintain a consistent
interface over time, even if the implementation within getQuiz is changed. The user
will always call quiz.quizMe() and quiz.submit(). You can change which functions
are assigned to those two properties of the interface object and how those functions
work, but you never remove or rename those properties.

 Notice how the program is made up of small pieces working together to build its
functionality. As ever, your aim is to make the code readable, understandable, and
easy to follow. The if statement and its else clause help you to direct the flow of the
program to take the appropriate actions at each stage.

 It’s time to put these new ideas to work in The Crypt.

12.5 The Crypt—checking user input
In chapter 11, you created a getGame function that returns a public interface for The
Crypt. Players can call a go method to move from place to place and a get method to
pick up items:

return {
 go: function (direction) {
 var place = player.getPlace();
 var destination = place.getExit(direction);
 player.setPlace(destination);

215The Crypt—checking user input
 render();
 return "";
 },

 get: function () {
 var place = player.getPlace();
 var item = place.getLastItem();
 player.addItem(item);
 render();
 return "";
 }
};

12.5.1 Step by step through the go method

Let’s step through the first three lines of the go method. See if you can spot where a
problem could arise.

RETRIEVE THE PLAYER’S LOCATION

You start with the getPlace method. It returns the player’s current location.

var place = player.getPlace();

You then assign the location to the place variable. If the player is currently in the
kitchen, then the code is equivalent to

var place = kitchen;

The program assigned the player’s starting location earlier, using the setPlace method:

player.setPlace(kitchen);

USE THE DIRECTION TO FIND THE DESTINATION

Now that you have the current place, you can call its getExit method to retrieve the
destination for a given direction.

var destination = place.getExit(direction);

When the player calls the go method, the argument is assigned to the direction
parameter.

> game.go("south")

The previous command will execute code equivalent to the following:

var destination = place.getExit("south");

If The Library is south of The Kitchen, then the code is equivalent to

var destination = library;

216 CHAPTER 12 Conditions: choosing code to run
MOVE THE PLAYER TO THE DESTINATION

You have the destination; you only need to update the player’s location.

player.setPlace(destination);

Fantastic! The user can decide where to go in the game. So, can you let them loose in
your carefully crafted castles? Well, no. You see, users are evil. Pure evil!

12.5.2 Never trust user input

Sorry, I panicked. Of course users aren’t evil. But they do make mistakes. And they
sometimes own cats. And most cats can’t type. Whenever a user is expected to provide
input for a program, we must guard against mistakes, whether typos (possibly of cat
origin), misunderstandings (which may be our fault), or curiosity-driven explorations
of what the program can do.

 The go method expects the user to enter a valid direction as a string. It uses that
direction to find a destination, the place to which the player is to be moved. If the user
enters a direction that doesn’t exist, the whole game breaks!

> game.go("snarf")

Figure 12.4 shows what happened on JS Bin when I entered the previous command while
playing the chapter 11 version of The Crypt at http://jsbin.com/yuporu/edit?js,console.

Error messages on your browser might be slightly different. Even entering a valid
direction after the mistake doesn’t fix things. From the errors in figure 12.4 it looks
like there may be a problem with the place variable. The key statement in the go
method is the one that uses the user input:

var destination = place.getExit(direction);

If the specified direction is not one of the place’s exits, then the getExit function will
return undefined. The program assigns undefined to the destination variable and
sets that value as the new place for the player:

player.setPlace(destination);

Figure 12.4 Specifying a direction that doesn’t exist breaks The Crypt.

http://jsbin.com/yuporu/edit?js,console

217The Crypt—checking user input
So the player’s location is now undefined, not a place constructed with the Place con-
structor. undefined has no showInfo or getExit methods; it has no methods at all!
The errors in figure 12.4 should now make more sense.

 So how can you guard against users (and their cats) making errors?

12.5.3 Safe exploration—using the if statement to avoid problems

You can use an if statement to check that you have a valid destination before updat-
ing the player’s location:

go: function (direction) {
 var place = player.getPlace();
 var destination = place.getExit(direction);

 if (destination !== undefined) {
 player.setPlace(destination);
 render();
 return "";
 } else {
 return "*** There is no exit in that direction ***";
 }
}

The getExit method returns undefined if the current place doesn’t have an exit for
the specified direction. You just need to check that the destination is not undefined
before calling setPlace.

if (destination !== undefined) {
 // There is a valid destination.
}

Remember from table 12.1 that the !== operator returns true when two values are not
equal and false when they are equal. You can add an else clause to catch the cases
where the destination is undefined.

if (destination !== undefined) {
 // There is a valid destination.
} else {
 // There is no exit in the direction specified.
}

Listing 12.8 shows an updated version of the go and get methods returned from the
getGame function. Entering a nonexistent direction at the console now looks like this:

> game.go("snarf")
 *** You can’t go in that direction ***

Calling get when there are no items to pick up looks like this:

> game.get()
 *** There is no item to get ***

218 CHAPTER 12 Conditions: choosing code to run

ined

Only partial code is shown in this listing. The full listing with Player and Place con-
structors and more places is on JS Bin.

var getGame = function () {
 var spacer = { … };
 var Player = function (name, health) { … };
 var Place = function (title, description) { … };
 var render = function () { … };

 var kitchen = new Place("The Kitchen", "You are in a kitchen…");
 var library = new Place("The Old Library", "You are in a library…");

 kitchen.addExit("south", library);
 library.addExit("north", kitchen);

 // Game initialization
 var player = new Player("Kandra", 50);
 player.addItem("The Sword of Doom");
 player.setPlace(kitchen);

 render();

 return {
 go: function (direction) {
 var place = player.getPlace();
 var destination = place.getExit(direction);

 if (destination !== undefined) {

 player.setPlace(destination);
 render();
 return "";

 } else {

 return "*** You can’t go in that direction ***";

 }
 },

 get: function () {
 var place = player.getPlace();
 var item = place.getLastItem();

 if (item !== undefined) {
 player.addItem(item);
 render();
 return "";
 } else {
 return "*** There is no item to get ***";
 }
 }
 };
};

var game = getGame();

Listing 12.8 Checking user input
(http://jsbin.com/zoruxu/edit?js,console)

Return an interface object
with go and get methods

Use getExit to find the
destination for the direction
specified by the user

Check that the destination
is not undefined; that is,
check that it is valid

Only set and show the new
place if the destination exists

Add an else clause
to handle when the
destination is undef

Give the user feedback
about the invalid
direction specified

Update the get method
to make similar checks
to the go method

http://jsbin.com/zoruxu/edit?js,console

219Summary
In the printed listing 12.8, the details of the Player and Place constructors were left
out to make it easier to focus on the changes to the go and get methods. In chapter 13
you’ll move each constructor function to its own file and see how to import the files in
JS Bin. Such increased modularity can help you focus on one thing at a time and make
it easier to reuse code across multiple projects.

12.6 Summary
■ Use comparison operators to compare two values. The operators return true or

false, boolean values:

> 5 === 5 // Strict equality
 true
> 10 > 13 // Greater than
 false

■ Use an if statement to execute code only if a condition is met:

if (condition) {
 // Execute code if condition evaluates to true
}

■ Set conditions using comparison operators and/or variables:

if (userNumber === secret) {
 // Execute code if userNumber and secret are equal
}

if (inPlay) {
 // Execute code if inPlay evaluates to true
}

■ Add an else clause to execute code when a condition is not met:

if (condition) {
 // Execute code if condition evaluates to true
} else {
 // Execute code if condition evaluates to false
}

■ Include extra if statements in the else clause to cover all possibilities:

if (userNumber === secret) {
 console.log("Well done!");
} else if (userNumber > secret) {
 console.log("Too high!");
} else {
 console.log("Too low!");
}

220 CHAPTER 12 Conditions: choosing code to run
■ Generate random numbers with Math.random(). The numbers generated are
between 0 and 1. They can equal 0 but not 1:

> Math.random()
 0.552000432042405

■ Scale up the random numbers to the range you want:

Math.random() * 10 // 0 <= decimal < 10
Math.random() * 10 + 1 // 1 <= decimal < 11

■ Round the random numbers to integers with Math.floor():

Math.floor(Math.random() * 10 + 1) // 1 <= integer <= 10

■ Never trust user input. Put checks in place to make sure any input is valid.

Modules: breaking
a program into pieces
As the applications you develop become larger, involving more and more variables,
objects, arrays, and functions, it can become harder and harder to work efficiently
within a single program file. Good text editors and development environments can
help, but even with their tools, it quickly becomes a good idea to split the code
across multiple files.

 For example, in The Crypt you have spacer, players, places, maps, and the game
logic itself. You’ve probably noticed how long the code listings have become on JS
Bin when all of the elements are included. Putting the code for each element in its
own file can help you to focus on one piece of the program at a time and make it
easier for different programmers to develop and test different parts of applications.
Figure 13.1 shows your aim of splitting one large program into modules.

This chapter covers
■ Importing code into JS Bin with script elements
■ Avoiding repeated variable names
■ Running functions without assigning them to

variables
■ Using modules to organize your (shared)

codebase
221

222 CHAPTER 13 Modules: breaking a program into pieces
Having discrete pieces of functionality and data in different files also promotes code
reuse. Rather than cutting and pasting useful functions and snippets of JavaScript
from one project into others, they can stay in a single library file that’s imported into
other projects when needed. For example, our trusty spacer namespace from chap-
ter 7, for formatting text on the console, could be used in a quiz app and a blog app.
Rather than repeating the spacer code in each app, you could place it in its own file
and import it when needed (figure 13.2).

 I’m going to loosely call such files modules. There are a number of published Java-
Script projects and standards for managing modules that will have their own, stricter

Game init

spacer

Player

Place

Map code

spacer

Player

Place

Map code

Game init

All of the code in a single file

Different sections of
code perform different
functions

Each section of code
in its own file

Break into modules

Figure 13.1 Breaking one large program into modules

The spacer code is
repeated in each app.

They each have a
separate copy

The same file is imported
by both apps

spacer

Quiz code

spacer

Blog code

spacer

Blog code

Quiz code

The spacer code is
in its own file

The copy approach The module approach

Figure 13.2 Moving spacer into a module allows the same single file to be used in many
projects.

223Understanding bins and files on JS Bin
definitions for what form a module must take, and the latest versions of JavaScript itself
are introducing a native module system, but I’m happy to keep things simple for now.

 This chapter looks at how to import modules into JS Bin using HTML script
elements. You’ll see how a random number generator function and the text-formatting
capabilities of the spacer namespace can be incorporated into other projects. When
you start to include code from various modules into a single program, you have to
keep a close eye on which variable names are being used; there’s a danger that
imported files could overwrite your variables. You also take a look at how to minimize
such problems by using namespaces and by making use of immediately invoked
function expressions, a way of running function code without assigning the functions
to variables.

 First up, let’s look at how JS Bin works with files.

13.1 Understanding bins and files on JS Bin
In chapter 12 you created a simple game that challenged players to guess a number
between 1 and 10. You generated the number using the Math.random method. In a
similar way, you now want to update your quiz app to display a random question from
its bank of questions. Both the guessing game and the quiz need to be able to gener-
ate a random whole number between two limits. They can both use a function like
the following:

var between = function (lowest, highest) {
 // Return a whole number between lowest and highest inclusive
};

In this section, you create and save a JavaScript file on JS Bin that contains the Num-
ber Generator code. In section 13.2 you learn how to load the file, and in section 13.3
you load it into the guessing game and the quiz app, as illustrated in figure 13.3.

The same file is imported by both apps

Number Generator

Quiz App Guessing Game

The Number Generator code is in its own file

Figure 13.3 The Number Generator code is imported by the quiz app and the
guessing game.

224 CHAPTER 13 Modules: breaking a program into pieces
Before you learn how to import files, we need to take a brief look at how JS Bin saves
your work.

 JS Bin is a simple development environment that lets you work on HTML, CSS,
and JavaScript code in separate panels. Figure 13.4 shows those three panels open at
the same time, all containing code.

JS Bin combines the code in the HTML, CSS, and JavaScript panels to produce your
web page, which it shows in the Output panel (figure 13.5). You’ll look at HTML (and
a little CSS) in more detail in part 3.

Any errors or warnings that occur when you run your code appear in the Console
panel. You can also log messages to the Console panel from within your JavaScript
code—that’s how you’ve been displaying your output so far. You’re focusing on Java-
Script, so you haven’t been bothered about the web page generated in the Output
panel. You can see the page from figures 13.4 and 13.5 on JS Bin at http://jsbin.com/
jejunu/edit?output. Toggle the panels to see the code.

Figure 13.4 HTML, CSS, and JavaScript panels on JS Bin

Figure 13.5 The HTML, CSS, and JavaScript code are all used to produce the web page
output.

http://jsbin.com/jejunu/edit?output
http://jsbin.com/jejunu/edit?output

225Understanding bins and files on JS Bin
 As well as providing a combined environment for you to edit the different types of
code that make up a web page, JS Bin gives you access to the HTML, the CSS, and the
JavaScript code as separate files. To create JavaScript code and see it as a separate file,
follow these steps on JS Bin:

1 Create a bin
2 Write some code in the JavaScript panel
3 Make a note of the filename
4 View an individual code file

13.1.1 Creating a bin

On the File menu on JS Bin, click New. JS Bin will create HTML, CSS, and JavaScript
files for you. It calls those three files together a bin and displays the contents of each
file on its matching panel. The HTML file includes some boilerplate code that’s com-
mon to most new web pages; the CSS and JavaScript files are blank.

13.1.2 Writing some code

Add the following code to the JavaScript panel.

var between = function (lowest, highest) {
 var range = highest - lowest + 1;
 return lowest + Math.floor(Math.random() * range);
};

The between function returns a random whole number between the values of lowest
and highest inclusive. For example, between(3, 5) will return 3 or 4 or 5.

13.1.3 Making a note of the filename

JS Bin assigns each bin a code used to edit the bin’s files and to access them individu-
ally. Take a look at the current URL in your browser’s address bar. (You may have to
click the address bar to see the full address.) Figure 13.6 shows the URL with the bin
code and visible panels highlighted.

Make a note of the bin code for your current work on JS Bin—it will be different from
figure 13.6. The bin code for my work is qezoce.

http://jsbin.com/qezoce/edit?html,js,console

Bin code Visible panels

Load editing environment
Figure 13.6 Breaking down
a JS Bin URL

226 CHAPTER 13 Modules: breaking a program into pieces
13.1.4 Viewing an individual code file

To access individual code files, you use a different format of URL, shown in figure 13.7.
It has a prefix of output and ends with the bin code and a file extension. The file
extension specifies what type of file you want to load. Use js for JavaScript.

Visiting http://output.jsbin.com/qezoce.js loads just the JavaScript file, as shown in
figure 13.8. All the panels and menus and controls that are part of the JS Bin editing
environment are not loaded; it’s just the plain text of the JavaScript file.

(The output isn’t always formatted nicely for human readers; unnecessary spaces and
line-breaks may have been removed.) Have a go at loading your version of the file,
using your bin code from JS Bin.

 Great! You can get your hands on your pure JavaScript. But how do you make it
appear in another program?

13.2 Importing files into other projects
You’re going to create a program that uses the number generation function, between,
from the last section. You take these steps:

1 Create a bin
2 Write some code in the JavaScript panel
3 Add a script element to the HTML panel
4 Refresh the page
5 Run the program

http://output.jsbin.com/qezoce.js

Bin code

File extensionPrefix
Figure 13.7 The JS Bin URL for a
JavaScript file

Figure 13.8 A JavaScript file on JS Bin

http://output.jsbin.com/qezoce.js

227Importing files into other projects
13.2.1 Creating a bin

Create a bin on JS Bin by clicking New on the File menu. The HTML, CSS, and Java-
Script panels are reset.

13.2.2 Writing some code

Enter the following code in the JavaScript panel:

// requires the Number Generator module
var num = between(3, 7);
console.log(num);

Running the program now will cause an error—there’s no between variable declared
or function defined. The between function is in a separate file. This brings up the issue
of dependencies; when splitting code into modules, it’s not uncommon for one module
to depend on another in order to function. The previous code depends on the Num-
ber Generator module. More advanced module systems usually let you explicitly record
and automatically load dependencies; for now, you can add comments to show any
required modules.

13.2.3 Adding a script element

It’s time to make use of the HTML panel on JS Bin. HTML is the code used for the struc-
ture and content of web pages; it’s how you specify headings and paragraphs and lists and
links and so on. You’ll get a proper introduction in chapter 17 and make good use of it
throughout part 3. For now, your focus is still very much on the JavaScript and using JS
Bin to help you learn and explore. You’re going to use only a tiny snippet of HTML to
help you break up longer programs into separate files and load them as needed.

 You use an HTML script element to specify the JavaScript file you want to load.
Figure 13.9 shows the parts that make up the element.

<script src="http://output.jsbin.com/qezoce.js"></script>

script element

Closing script tagOpening script tag

<script src="http://output.jsbin.com/qezoce.js"></script>

src attribute

Address of the file to load

Figure 13.9 The parts that make up a script element

228 CHAPTER 13 Modules: breaking a program into pieces
Don’t worry too much for now about the names of all of the parts. You can use the
script element to load files without a full understanding of HTML elements, tags,
and attributes. You’ll focus on those in chapter 17.

 Show the HTML panel on JS Bin. You’ll see some default HTML already in place.
You don’t need that for your purposes—you’re not building a web page; you’re just
interested in loading a JavaScript file. Replace the default HTML with code to load
the JavaScript, using the bin code of the file you created in the last section.

<script src="http://output.jsbin.com/qezoce.js"></script>

The HTML included is a single script element with an src attribute. You use the
script element to load the JavaScript file specified by the src attribute. (src is short
for source—the address of the file.) In general, to load a file, use the following format:

<script src="path/to/someFile.js"></script>

Modern browsers will assume the file contains JavaScript. For older browsers, you can
include a type attribute as well.

<script src="path/to/someFile.js" type="text/javascript"></script>

13.2.4 Refreshing the page

JS Bin doesn’t always load files automatically; you may need to refresh the page in
your browser after you add the script element.

13.2.5 Running the program

Click Run. The Console panel should show a number between 3 and 7. Keep clicking
Run to generate more random numbers.

 Listings 13.1 and 13.2 repeat the HTML and JavaScript you’ve used. The JS Bin
links for the two listings lead to the same bin. Running the program five times pro-
duces output something like this (it is random!):

> 5
> 7
> 7
> 3
> 4

<script src="http://output.jsbin.com/qezoce.js"></script>

Listing 13.1 Loading JavaScript with a script tag (HTML)
(http://jsbin.com/lifugam/edit?html,js,console)

http://jsbin.com/lifugam/edit?html,js,console

229Importing the Number Generator—further examples
// requires the Number Generator module
var num = between(3, 7);
console.log(num);

When you run the program, JS Bin will first load and run the file specified in the
script element’s src attribute. Then it will run any code in the JavaScript panel. The
loaded file and JavaScript panel code together form the following single program:

// From the loaded file
var between = function (lowest, highest) {

 var range = highest - lowest + 1;
 return lowest + Math.floor(Math.random() * range);

};

// From the JavaScript panel
var num = between(3, 7);
console.log(num);

When you click the Run button in the Console panel, it can take a moment for JS Bin
to load the file specified in the script tag. Once the code runs, the random number
is logged to the console.

13.3 Importing the Number Generator—further examples
You’ve seen how JS Bin assigns a code to each bin you create and how you can use that
code to access individual files from your project. You created a random number gen-
erator function, between, and accessed the JavaScript file containing the code. One of
the goals of splitting your work into modules is to use the same code in multiple proj-
ects by importing it rather than copying and pasting it; see figure 13.10.

Listing 13.2 Code in the JavaScript panel as well
(http://jsbin.com/lifugam/edit?html,js,console)

The same file is imported by both apps

Number Generator

Quiz App Guessing Game

The Number Generator code is in its own file

Figure 13.10 Importing the Number Generator function into two projects

http://jsbin.com/lifugam/edit?html,js,console

230 CHAPTER 13 Modules: breaking a program into pieces
Let’s see that idea in action by importing the Number Generator into two other proj-
ects: the quiz app and the guessing game.

13.3.1 Picking random questions in the quiz app

It’s time to randomize your quiz app. The new version of the app displays a random
question from its question bank each time you call quizMe on the console:

> quiz.quizMe()
 5 x 6
> quiz.submit("30")
 Correct!
> quiz.quizMe()
 7 x 8
> quiz.submit("30")
 No, the answer is 56

Listing 13.4 shows the JavaScript for the main quiz app. You import the code for the
between function by using a script element on the HTML panel (listing 13.3).

<script src="http://output.jsbin.com/qezoce.js"></script>

var getQuiz = function () {
 var qIndex = 0;

 var questions = [
 { question: "7 x 8", answer: "56" },
 { question: "12 x 12", answer: "144" },
 { question: "5 x 6", answer: "30" },
 { question: "9 x 3", answer: "27" }
];

 var getQuestion = function () {
 qIndex = between(0, questions.length - 1);
 return questions[qIndex].question;
 };

 var checkAnswer = function (userAnswer) {
 if (userAnswer === questions[qIndex].answer) {
 return "Correct!";
 } else {
 return "No, the answer is " + questions[qIndex].answer;
 }
 };

Listing 13.3 Using the Number Generator with the quiz app (HTML)
(http://jsbin.com/ponogi/edit?html,js,console)

Listing 13.4 Using the Number Generator with the quiz app
(http://jsbin.com/ponogi/edit?html,js,console)

Wrap the code in a function
to create a local scope

Use the between function
to pick a random question

http://jsbin.com/ponogi/edit?html,js,console
http://jsbin.com/ponogi/edit?html,js,console

231Importing the Number Generator—further examples
 return {
 quizMe: getQuestion,
 submit: checkAnswer
 };
};

var quiz = getQuiz();

You use the between function to pick a random question from the question bank. The
number of elements in the questions array is given by questions.length (every array
has a length property) and the question indexes run from 0 to one less than the
length. If there are four elements in the array, then the indexes run from 0 to 3. So, to
pick a random index you use

qIndex = between(0, questions.length – 1);

You use the wrap-and-return module pattern from chapter 11, hiding your implemen-
tation (the code that makes everything work) inside the getQuiz function and return-
ing the public interface as an object.

 Follow the listing link to the game on JS Bin and test your knowledge of multiplica-
tion facts! The answers are stored as strings, so make sure you submit strings for the
program to check: quiz.submit("30"), not quiz.submit(30).

13.3.2 Using the between function in your guessing game

Listing 13.6 shows the JavaScript code for your guessing game. At the console prompt,
players have to guess a number between 5 and 10, inclusive:

> guess(7)
 Too high!
> guess(5)
 Too low!
> guess(6)
 Well done!

The app uses the between function, so you import it using a script element on the
HTML panel (see the following listing).

<script src="http://output.jsbin.com/qezoce.js"></script>

Listing 13.5 Using the Number Generator in the guessing game (HTML)
(http://jsbin.com/tixina/edit?html,js,console)

Return an interface object
from the getQuiz function

Assign the interface returned from
getQuiz to the quiz variable

http://jsbin.com/ponogi/edit?html,js,console
http://jsbin.com/tixina/edit?html,js,console

232 CHAPTER 13 Modules: breaking a program into pieces
var getGuesser = function (lowest, highest) {

 var secret = between(lowest, highest);

 return function (userNumber) {
 if (userNumber === secret) {
 return "Well done!";
 } else if (userNumber > secret) {
 return "Too high!";
 } else {
 return "Too low!";
 }
 };
};

var guess = getGuesser(5, 10);

Again, follow the listing link to JS Bin and get guessing!
 Both the quiz app and the guessing game now import the same Number Genera-

tor file. The number generation code is in one place; there is a single source of truth.
Any updates or fixes can be performed on that one file, and all the projects that use it
will load the new version.

 Importing one file is useful, but can you load more than one?

13.4 Importing multiple files
In chapters 7 and 11, you saw that an object can be used as a namespace, a way of orga-
nizing properties and methods so that only a single variable is required. As an exam-
ple, you created spacer, a namespace of functions for formatting text on the console.
The spacer namespace could be useful in a number of projects, whenever you want to
format your text output with borders and boxes. Rather than copying and pasting the
spacer code into every program where it’s used, it seems like an obvious candidate to
be saved to its own file and imported as needed. You can view the spacer code at
http://jsbin.com/juneqo/edit?js.

 Let’s put spacer to work straight away. In listing 13.6 you updated your guessing
game to import the between function and used it to generate the secret number to be
guessed. Say you now want to format the feedback you give to players by wrapping the
messages in boxes. That’s what spacer is for! A game on the console will look some-
thing like this:

> guess(10) > guess(5) > guess(9)
 +++++++++++++ ------------ ==============
 + Too high! + - Too low! - = Well done! =
 +++++++++++++ ------------ ==============

Listing 13.6 Using the Number Generator in the guessing game
(http://jsbin.com/tixina/edit?html,js,console)

Wrap the code in a function
to create a local scope

Use the between function
to pick a random number

Return a function that players
use to make their guesses

Assign the returned function
to the guess variable

http://jsbin.com/tixina/edit?html,js,console
http://jsbin.com/juneqo/edit?js

233Importing multiple files
Figure 13.11 shows the guessing game app importing the Number Generator and spacer
modules.

 The following listing shows the script elements added to the HTML panel to import
the two modules you’re using.

<!-- Number Generator -->
<script src="http://output.jsbin.com/qezoce.js"></script>

<!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

Comments have been added to note which modules are being imported; JS Bin
addresses aren’t very user friendly, so it’s helpful to make it clear what you’re trying to
load. The comments are HTML comments, so they look a little different from Java-
Script comments.

 The next listing shows the guessing game code using the two imported modules,
between and spacer.

var getGuesser = function (lowest, highest) {
 var secret = between(lowest, highest);

 return function (userNumber) {
 if (userNumber === secret) {
 return spacer.box("Well done!", 14, "=");
 } else if (userNumber > secret) {
 return spacer.box("Too high!", 13, "+");
 } else {
 return spacer.box("Too low!", 12, "-");

Listing 13.7 Using spacer and between in the guessing game (HTML)
(http://jsbin.com/foqowa/edit?html,js,console)

Listing 13.8 Using spacer and between in the guessing game
(http://jsbin.com/foqowa/edit?html,js,console)

Guessing Game

You can import as many modules as you need

spacer

Number Generator

Figure 13.11 Importing the Number Generator and spacer modules

Use the imported
between function

Use the imported
spacer namespace

http://jsbin.com/foqowa/edit?html,js,console
http://jsbin.com/foqowa/edit?html,js,console

234 CHAPTER 13 Modules: breaking a program into pieces
 }
 };
};

var guess = getGuesser(5, 10);

Putting previously written and tested code into separate files like this also helps you
focus on new code you’re working on; listing 13.8 can be short and sweet because your
trusted spacer code is packaged off in an external file.

 When you import JavaScript, it’s as if all of the imported code is joined to form a
single file. If different imported files use the same variable names, it’s possible for
later code to inadvertently overwrite earlier code. Boom—you have variable collisions!

13.5 Collisions—when imported code overwrites
your variables
You decide the boxed messages for your guessing game feedback are a bit too much.
You’d like the feedback to look like this:

> guess(10) > guess(9)
 + T-o-o- -h-i-g-h-! + = W-e-l-l- -d-o-n-e-! =

The messages take up less room but are nicely spaced out with dashes between charac-
ters. Fortunately, a friend of yours, Kallie, has been working on her own formatting
functions and has kindly bundled them into a module you can import. The function
you need is called dasher and is really easy to use:

dasher("message"); // m-e-s-s-a-g-e
dasher("Too low!"); // T-o-o- -l-o-w-!

You add a script element to the guessing game HTML panel to import Kallie’s code, as
shown next.

<!-- Number Generator -->
<script src="http://output.jsbin.com/qezoce.js"></script>

<!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- Kallie’s code -->
<script src="http://output.jsbin.com/soxeke.js"></script>

No, I haven’t shown you the JavaScript of Kallie’s code. You know dasher is part of the
interface, the variables and functions you’re expected to use, and you know what
dasher does; you shouldn’t need to know how it does what it does, the implementation.
Of course, you might (and probably should) be interested in the implementation, but
you don’t need to understand it in order to use the interface, the dasher function.

Listing 13.9 Importing Kallie’s code (HTML)
(http://jsbin.com/zusodu/edit?html,js,console)

http://jsbin.com/zusodu/edit?html,js,console

235Collisions—when imported code overwrites your variables
 You update the guessing game to use the dasher function, as shown here.

var getGuesser = function (lowest, highest) {
 var secret = between(lowest, highest);

 return function (userNumber) {
 var msg;
 if (userNumber === secret) {
 msg = dasher("Well done!");
 return spacer.wrap(msg, msg.length + 4, "=");
 } else if (userNumber > secret) {
 msg = dasher("Too high!");
 return spacer.wrap(msg, msg.length + 4, "+");
 } else {
 msg = dasher("Too low!");
 return spacer.wrap(msg, msg.length + 4, "-");
 }
 };
};

var guess = getGuesser(5, 10);

Happy with your work, you run the program and make a guess. Error! What? Where
has spacer.wrap gone? Figure 13.12 shows what happened in my browser.

There seems to be a problem with spacer.wrap, which has been a working part of
your spacer namespace since chapter 7. Why has it chosen now to break? It’s time to
check inside Kallie’s module. If you take a look at her code in the following listing,
you might spot the problem.

var spreader = function (text, character) {
 return text.split("").join(character);
};

Listing 13.10 Using Kallie’s code
(http://jsbin.com/zusodu/edit?html,js,console)

Listing 13.11 Kallie’s formatting code
(http://jsbin.com/soxeke/edit?js,console)

Use dasher to space
out your message

Use spacer.wrap to start
and end the message
with a character

Figure 13.12 For some reason, the
program can’t find spacer.wrap.

Define a function to
spread out text with a
specified character

http://jsbin.com/zusodu/edit?html,js,console
http://jsbin.com/soxeke/edit?js,console

236 CHAPTER 13 Modules: breaking a program into pieces
var spacer = function (text) {
 return spreader(text, " ");
};

var dasher = function (text) {
 return spreader(text, "-");
};

Kallie’s code doesn’t only include the dasher function; it also has a spacer function.
The three variables she has used, spreader, spacer, and dasher, are global variables.
Your spacer namespace also uses a global variable, spacer. Her spacer has overwrit-
ten your spacer, as shown in figure 13.13.

The problem isn’t with the implementation of the functions—they work just fine—
it’s with how the functions have been made available within the module. When vari-
ables are added to the global scope, possibly by different people in different mod-
ules, there’s always the chance that the same name will be used in more than one
declaration.

13.5.1 Variable collisions

Your modules make their functionality available by using at least one global variable.
But what happens if the same variable is used by more than one module? Well, the last
module wins, assigning its own value to the variable. In the guessing game code, you
load two modules that use a global spacer variable and then you try to use that variable

Define a function to spread
out text with spaces

Define a function to spread
out text with dashes

Guessing Game

You can import as many
modules as you need, but
watch out for variable collisions

spacer

var spacer = ...

Number Generator

Kallie’s Code

var spacer = ...

Two modules declare
the spacer global variable

The second spacer overwrites the first

Figure 13.13 Two modules declare the same global variable, leading to a collision.

237Collisions—when imported code overwrites your variables
later in the program. The following snippet shows how the second spacer overwrites
the first, leading to an error when you try to use spacer.wrap.

// Code in first module
var spacer = {
 line : …,
 wrap : …,
 box : …
};

// Code in second module
var spacer = function (text) { … };

// Later in the code
spacer.wrap(msg, msg.length + 4, "="); // ERROR! There is no spacer.wrap.

When one declaration supersedes another like this it’s called a variable collision; the
second variable declaration clobbers the first. You can appreciate why declaring lots of
global variables is called polluting the global namespace—the more variables you declare,
the greater the chance of collisions. Reduce the number of global variables by using
namespaces, discussed next, and immediately invoked function expressions, discussed
in section 13.6.

13.5.2 Minimizing collisions by using namespaces

Your spacer namespace module is well behaved because it uses only a single global
variable. Rather than separate global variables for the line, wrap, and box functions, it
uses an object as a namespace and assigns the functions to properties of the object.
The object is then assigned to the single variable, spacer.

 Kallie apologizes for the pollution her module caused—she’s been busy—and
updates the module to use a namespace, as shown in the next listing.

var kalliesCode = {

 spreader: function (text, character) {
 return text.split("").join(character);
 },

 spacer: function (text) {
 return kalliesCode.spreader(text, " ");
 },

 dasher: function (text) {
 return kalliesCode.spreader(text, "-");
 }
};

Listing 13.12 Kallie’s formatting code in a namespace
(http://jsbin.com/moheka/edit?js,console)

Wrap the functions in
an object assigned to a
single global variable

Add the spacer function
as a property of the
namespace object

Use dot notation when
calling kalliesCode
functions

http://jsbin.com/moheka/edit?js,console

238 CHAPTER 13 Modules: breaking a program into pieces
You update your guessing game HTML to import the updated module (listing 13.13)
and your JavaScript code to call the dasher function from within the kalliesCode
namespace (listing 13.14).

<!-- Number Generator -->
<script src="http://output.jsbin.com/qezoce.js"></script>

<!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- Kallie’s code -->
<script src="http://output.jsbin.com/moheka.js"></script>

var getGuesser = function (lowest, highest) {
 var secret = between(lowest, highest);

 return function (userNumber) {
 var msg;
 if (userNumber === secret) {
 msg = kalliesCode.dasher("Well done!");
 return spacer.wrap(msg, msg.length + 4, "=");
 } else if (userNumber > secret) {
 msg = kalliesCode.dasher("Too high!");
 return spacer.wrap(msg, msg.length + 4, "+");
 } else {
 msg = kalliesCode.dasher("Too low!");
 return spacer.wrap(msg, msg.length + 4, "-");
 }
 };
};

var guess = getGuesser(5, 10);

Follow the listing link to JS Bin, run the program, and play the game. Using a name-
space has fixed the problem.

= W-e-l-l- -d-o-n-e-! =

Another important way of avoiding polluting the global namespace, this time by using
functions, is covered next. It has a great name … and here it is!

13.6 Immediately invoked function expressions (IIFE)
If the name of this section has immediately invoked a funky expression on your face, I
hope it’s one of curiosity, intrigue, and adventure rather than befuddlement, fear, or

Listing 13.13 Importing Kallie’s namespace (HTML)
(http://jsbin.com/seqahi/edit?html,js,console)

Listing 13.14 Using Kallie’s code
(http://jsbin.com/seqahi/edit?html,js,console)

Call the dasher function
from the kalliesCode
namespace

Happily use
spacer.wrap

http://jsbin.com/seqahi/edit?html,js,console
http://jsbin.com/seqahi/edit?html,js,console

239Immediately invoked function expressions (IIFE)
horror. Immediately invoked function expressions are just functions that you call straight
away, without even bothering to use a variable. But why would you do that?

 In section 13.5, you imported a module of code written by a friend, Kallie. (Hon-
estly, you’ve known her for years.) Unfortunately, Kallie’s global variables collided
with yours (ouch!) and overwrote your beloved spacer namespace. You learned an
important lesson about the dangers of global variables and vowed to do whatever you
can to reduce pollution of the global namespace. You decide to review some of your
code, on the lookout for global variables you can remove.

 You start your review with the quiz app from earlier in the chapter. The following
listing shows the structure of your code, with global variables, local variables, and the
interface object.

var getQuiz = function () {

 var qIndex = 0;
 var questions = […];
 var getQuestion = function () { … };
 var checkAnswer = function (userAnswer) { … };

 return {
 quizMe: getQuestion,
 submit: checkAnswer
 };

};

var quiz = getQuiz();

The program declares two global variables: getQuiz and quiz. On the first line you
define a function and assign it to getQuiz.

var getQuiz = function () { … };

Then, on the last line, you immediately call the function.

var quiz = getQuiz();

So, you declare getQuiz as a global variable—nasty pollution—and then use it only
once before leaving it hanging around in the global scope like a bad smell. Shame on
you! Remember, global variables run the risk of clobbering other global variables;
they may seem fine in small pieces of code, but as projects grow and modules are cre-
ated and imported, a faint whiff of unease soon builds to the furious stench of despair.

Listing 13.15 Random quiz questions with two global variables
(http://jsbin.com/ponogi/edit?html,js,console)

Define a function to create
local scope and assign it to
a global variable, getQuiz

Use var inside the
function to declare
local variables

Return an interface
object to give users
access to some functions

Call getQuiz and assign the
interface returned to a
global variable, quiz

http://jsbin.com/ponogi/edit?html,js,console

240 CHAPTER 13 Modules: breaking a program into pieces
TIP Avoid declaring global variables, polluting the global namespace. Reduce
the number of global variables by using objects as namespaces. Declare local
variables inside functions.

You can use an immediately invoked function expression to cut the number of global
variables in half. To appreciate how to use an IIFE for the benefit of your programs,
consider the following points:

■ Recognizing function expressions
■ Invoking functions
■ Immediately invoking function expressions
■ Returning information from an IIFE

13.6.1 Recognizing function expressions

You’ve been using function expressions since chapter 4. You’ve assigned them to variables
and properties, passed them as arguments, and returned them from other functions.

var show = function (message) { //
 console.log(message); // Assign to a variable
}; //

var namespace = {
 show: function (message) { //
 console.log(message); // Assign to a property
 } //
};

tweets.forEach(function (message) { //
 console.log(message); // Pass as an argument to forEach
}); //

var getFunction = function () {
 var localMessage = "Hello Local!";

 return function () { //
 console.log(localMessage); // Return from a function
 }; //
};

You’ve used functions to create blocks of code you can call on demand and to create
local scopes, hiding variables you want to be private from the peeks and tweaks of
users and programmers.

13.6.2 Invoking functions

To invoke, or call, a function, you use the function invocation operator, (), a pair of paren-
theses. Here’s how to invoke the four example function expressions in the last section:

show("Hello World!"); // Call the show function

namespace.show("Hello World!"); // Call the show method

// Automatically called by forEach

241Immediately invoked function expressions (IIFE)
var show = getFunction(); // getFunction returns a function
show(); // Call the returned function

You pass arguments to the functions between the parentheses of the invocation opera-
tor. Any values that the functions return replace the function call.

13.6.3 Immediately invoking function expressions

You don’t need to assign a function expression to a variable in order to invoke it. Just wrap
the function expression in parentheses and append the function invocation operator:

(function () {
 console.log("Hello World!");
})();

Figure 13.14 shows an annotated version of the code pattern.

The code in the function body runs immediately. But no global variable is used. The
function expression has no impact on the global namespace. Breathe in the pollution-
free, piquant freshness.

13.6.4 Returning information from an IIFE

So, immediately invoked functions reduce pollution and are great for hiding your pri-
vates. But there’s more! Just like any other functions, immediately invoked functions
can return values, such as objects acting as interfaces, giving you controlled access to
the secret goodies inside the functions. (Note: please think carefully about just how
much access to your privates is appropriate.)

 Listing 13.16 demonstrates how an IIFE can return an interface object that you
then assign to a variable. If you run the program, you can access the quiz interface at
the console:

> quiz.quizMe()
 12 x 12
> quiz.submit("144")
 Correct!

(
 function () {
 console.log("Hello World!");
 }
)();

Immediately call the expression
with the function invocation operator

Wrap the function expression
in parentheses

Figure 13.14 An immediately invoked function expression

242 CHAPTER 13 Modules: breaking a program into pieces
var quiz = (function () {

 var qIndex = 0;
 var questions = […];
 var getQuestion = function () { … };
 var checkAnswer = function (userAnswer) { … };

 return {
 quizMe: getQuestion,
 submit: checkAnswer
 };

})();

You define a function, immediately invoke it, and assign the object returned to the
quiz variable. Using an immediately invoked function expression just does away with
the extra variable. Rather than

var getQuiz = function () {
 /* private */
 return interface;
};
var quiz = getQuiz();

you have

var quiz = (function () {
 /* private */
 return interface;
})();

You don’t need to use the getQuiz variable.
The Crypt uses a number of constructors and functions and objects to build the

game. You’ve seen the benefit of modules and immediately invoked function expres-
sions; let’s break the game code into modules.

13.7 The Crypt—organizing code into modules
Back at the start of this chapter, you saw how the growing amount of code in The Crypt
is motivation for breaking the program into modules. Now that you’ve learned the
hows and whys, it’s time to do the deed.

 The next listing shows the five HTML script elements you use to load the different
modules that make up the game.

Listing 13.16 Using an IIFE with the quiz app
(http://jsbin.com/titano/edit?html,js,console)

Wrap the function
in parentheses

Hide private
variables within
the function

Return the public
interface as an object

Finish wrapping the function in
parentheses and invoke it with ()

http://jsbin.com/titano/edit?html,js,console

243The Crypt—organizing code into modules
<!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- Player constructor -->
<script src="http://output.jsbin.com/nubijex.js"></script>

<!-- Place constructor -->
<script src="http://output.jsbin.com/dofuci.js"></script>

<!-- Map code -->
<script src="http://output.jsbin.com/dipaxo.js"></script>

<!-- Game initialization -->
<script src="http://output.jsbin.com/fisupe.js"></script>

Notice that the address for the spacer module is the same one you’ve been using through-
out the chapter. That’s the beauty of modules! You have a single file that’s used in multiple
projects. If you were to add a new formatting function to the spacer namespace, it would
immediately be available to all of the projects that import the module.

 The next listing shows the single line of JavaScript needed to get the game started.

var game = theCrypt.getGame();

Run the game; it should work just the same in modular form. All of the functionality is
defined in the modules; it requires minimal code to get the game started.

 Apart from spacer, the modules for The Crypt all share the same namespace, the-
Crypt (figure 13.15). You start the game by calling the getGame method of the theCrypt
namespace, theCrypt.getGame();

Listing 13.17 Importing modules for The Crypt (HTML)
(http://jsbin.com/zikuta/edit?html,js,console)

Listing 13.18 Importing modules for The Crypt
(http://jsbin.com/zikuta/edit?html,js,console)

spacerPlayer

Place

Map code

Game init

The spacer module uses
a different namespace

Only a single line of code
is needed to start the game

Game Start

These modules share
a namespace

Figure 13.15 The game imports
five modules. Four of them need
to share a namespace.

http://jsbin.com/zikuta/edit?html,js,console
http://jsbin.com/zikuta/edit?html,js,console

244 CHAPTER 13 Modules: breaking a program into pieces
You know that using a namespace is a good way to reduce the number of global vari-
ables and group related functions, but how can code in different module files share
the same namespace?

13.7.1 Sharing a namespace across modules

Using what you’ve learned in this chapter, you want to do the following:

■ Use a single global namespace, theCrypt, for all of the modules that form The
Crypt.

■ Assign to the namespace only those properties and functions that are needed
by other modules.

■ Hide everything else in the local scope of functions.

Modules add properties to the namespace theCrypt just as they would to any other
object:

theCrypt.Player = Player;

But which module creates the namespace in the first place? Trying to access an unde-
clared variable will cause an error. But it would be inconvenient to have to load the
modules in a certain order to ensure whichever one declares theCrypt is first. Fortu-
nately, in browsers, global variables are automatically assigned to the special global
object, window.

THE GLOBAL OBJECT, WINDOW

The window object is part of the way JavaScript works with global variables in browsers.
You can test out global variable declarations and window at the console prompt:

> var test = "Hi"
 undefined
> test
 "Hi"
> window.test
 "Hi"

You declare a global variable, test, and it’s automatically assigned as a property of
window. Back at the prompt, try accessing a nonexistent global variable:

> theCrypt
 "Can't find variable: theCrypt"

An error is thrown (although your browser may display a slightly different error mes-
sage). On the other hand, trying to access a nonexistent property of window doesn’t
throw an error; it returns undefined:

> window.theCrypt
 undefined

You can use the window object to check if theCrypt has been declared as a namespace
without causing any errors.

245The Crypt—organizing code into modules
USING WINDOW TO CHECK FOR GLOBAL VARIABLES

The next listing shows the Player module. Extra code has been wrapped around the
constructor to modularize it.

(function () {

 var Player = function (name, health) {
 /* unchanged implementation */
 };

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

 theCrypt.Player = Player;

})();

In listing 13.19 the Player module checks the window object to see if theCrypt has been
declared as a global variable. If the module can’t find theCrypt, then it declares it:

if (window.theCrypt === undefined) {
 window.theCrypt = {};
}

Once the module has ensured that the namespace is present, it adds the Player con-
structor as a property:

theCrypt.Player = Player;

The Player constructor is now available to other code that needs it, via the global vari-
able theCrypt.

 The next listing shows the Place module using the same global namespace.

(function () {

 var Place = function (title, description) {
 /* unchanged implementation */
 };

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

 theCrypt.Place = Place;

})();

Listing 13.19 The Player constructor as a module
(http://jsbin.com/nubijex/edit?js)

Listing 13.20 The Place constructor as a module
(http://jsbin.com/dofuci/edit?js)

Wrap the constructor in a
function to create a local scope

Don’t touch the
Player constructor

Ensure there’s a
global namespace
called theCrypt

Assign the Player
constructor to the
namespaceImmediately invoke the

function expression

Assign the Place
constructor to
the namespace

http://jsbin.com/nubijex/edit?js
http://jsbin.com/dofuci/edit?js

246 CHAPTER 13 Modules: breaking a program into pieces
Having each module check for theCrypt as a global variable on the window object
means no one module is required to be loaded first because it’s the one that creates
the namespace. They all check for theCrypt. The first module to be loaded won’t find
it and will create it before using it. Modules loaded after the first will find theCrypt
and assign to it the properties they want to be shared.

ASSIGNING NAMESPACE PROPERTIES TO LOCAL VARIABLES

You like the way a namespace cuts down on global variables, but you’re not so keen on
having to do more typing to use the shared properties. For example, the map code
module needs to create places in The Crypt using the Place constructor:

var kitchen = new Place("The Kitchen", "You are in a kitchen…");

But you’ve moved the Place constructor into a namespace, theCrypt. You could
change all of the references to Place in the map code:

var kitchen = new theCrypt.Place("The Kitchen", "You are in a kitchen…");
var library = new theCrypt.Place("The Old Library", "You are in a lib…");

But it can be easier to create a local Place variable and leave the original code alone:

var Place = theCrypt.Place;

var kitchen = new Place("The Kitchen", "You are in a kitchen…");

That’s a handy way to reduce typing if you need to use a namespace property multi-
ple times.

 Having moved sections of code into their own modules, you can start to think care-
fully about what each module does. Could they be split into smaller modules that have
more specific tasks? The next three chapters look at some common tasks and the code
patterns that are often seen in programs that use and display data that changes: mod-
els, views, and controllers.

13.8 Summary
■ Break up programs into modules, sections of code that can be loaded inde-

pendently.
■ Use the same module in multiple projects.
■ Load modules in JS Bin by using an HTML script element:

 <script src="path/to/module.js"></script>

■ Specify the location of the module file in the script element’s src attribute.
■ Minimize variable collisions, where one variable is overwritten by another, by

using namespaces and immediately invoked function expressions.

247Summary
■ Create immediately invoked function expressions by wrapping a function defi-
nition in parentheses and appending the function invocation operator, ().

 (function () {
 // Code to be executed immediately
 })();

■ Return an interface from the immediately invoked function expression. This is
called the module pattern:

 var game = (function () {
 // Local variables go here

 return {
 // Interface methods
 };
 })();

■ Make sure you load any modules that other modules depend on.

Models: working with data
In chapter 13, you saw how you can use modules to break a program into separate
files. You can then work on the modules independently, easily switch between mod-
ules, and reuse them across multiple projects. You can even publish your modules
and import published modules written by others.

 This chapter maintains that spirit of modularization and reuse. You look at mov-
ing data out of constructors and functions. You represent the data simply so that
multiple apps can use the data, even if the apps are written in different program-
ming languages. You then consider how to feed that data into constructors and
functions to build models that add extra functionality. Finally, you define map data
for The Crypt, adding challenges to make the game more engaging.

This chapter covers
■ Building models from data
■ Using the same data in multiple projects
■ Switching between data files
■ Specifying map data in The Crypt
248

249Building a fitness app—data and models
14.1 Building a fitness app—data and models
Your development work has really gotten you noticed (The Fruitinator! was a global
smash), and you’re now part of a team developing a fitness application. Health-conscious
users track their exercise, logging the date and duration of each session.

Mahesha
120 minutes on February 5th, 2017
35 minutes on February 6th, 2017

2 hours 35 minutes so far.
Great work!

The team is working on an Android version of the app using the Python programming
language, an iOS version using Swift, and a web-based version using JavaScript. The
same data will be used in all versions (figure 14.1).

Tasks involved in building the app include:

1 Retrieve user data as a string
2 Convert user data into user models
3 Display user data
4 Provide an interface for users to add sessions

The data is transferred across the internet as text. The format of the text is JSON,
which you’ll look at in chapter 20. As you’ll see then, the text is easy to convert into a
JavaScript object. The team has asked you to concentrate on the second task, building
user models from user data.

The same data is used by all of the apps

Android App iOS App

The fitness app server makes the data available

Web App

User Data

Figure 14.1 The same data is used by the different versions of the app.

250 CHAPTER 14 Models: working with data
14.1.1 Defining a User constructor

You’ve been asked to write JavaScript code to model a fitness app user. Your model
needs to do the following:

1 Store the user’s name.
2 Store a list of exercise sessions for the user, each with a date and duration.
3 Include a method for adding sessions to the list.
4 Include a method for retrieving data about the user.

Listing 14.1 shows your initial constructor function. You test it on the console:

> var user = new User("Mahesha")
 undefined
> user.addSession("2017-02-05", 120)
 120
> user.addSession("2017-02-06", 35)
 155
> user.getData().total
 155

var User = function (name) {

 var sessions = [];
 var totalDuration = 0;

 this.addSession = function (sessionDate, duration) {

 sessions.push({
 "sessionDate" : sessionDate,
 "duration" : duration
 });

 totalDuration += duration;

 return totalDuration;
 };

 this.getData = function () {
 return {
 "name" : name,
 "total" : totalDuration,
 "sessions": sessions.slice()
 };
 };
};

The constructor includes a name parameter, some private variables declared using var,
and two public methods assigned to the this object, addSession and getData. The
getData method uses slice with no arguments to grab a copy of the sessions array.

Listing 14.1 The User constructor
(http://jsbin.com/suzala/edit?js,console)

Declare private
variables

Add a session
object to the
sessions array

Add the current session’s
duration to the total

Define a function to
retrieve user data

Use slice to copy the
sessions array

http://jsbin.com/suzala/edit?js,console

251Building a fitness app—data and models
(See chapter 8 for a reminder on array methods like slice.) Providing a copy of the
session information prevents users from tweaking the sessions array outside the add-
Session method. The object that getData returns also includes a total property, hold-
ing the total duration of the logged sessions.

 When you create a JavaScript object using the User constructor, you create a user
model. The model is more than just data; it includes private variables and public meth-
ods for managing the data, as shown in figure 14.2.

If the model is more than the data, what does the data look like?

14.1.2 Getting a feel for the data as a JavaScript object

The data for a user is a simple JavaScript object:

var userData = {
 "name" : "Mahesha",
 "sessions" : [
 { "sessionDate" : "2017-02-05", "duration" : 120 },
 { "sessionDate" : "2017-02-06", "duration" : 35 },
 { "sessionDate" : "2017-02-06", "duration" : 45 }
]
};

You can access its properties, like userData.name. But it’s still just data; it doesn’t have
the extra capabilities of a model built with the User constructer, like an addSession or
getData method. The data object is shown again in figure 14.3 for comparison with
figure 14.2.

The special this object is returned

user = new User("Mahesha")

function (name)

{
 addSession: function (session) { ... },
 getData: function () { ... }
}

user =

/* private */

this.addSession = function (session) { ... };
this.getData = function () { ... };

The return value
replaces the
function call

A user model with private data and public methods

The User constructor function

Figure 14.2 A user model created by the User constructor function

252 CHAPTER 14 Models: working with data
Using simple JavaScript objects as the format for data is very common, even in other
programming languages and especially on the web. Your team developing the fitness
app is very happy that the user data is represented in such a well-supported form.

 In order to make the most of the extra methods provided by a user model,
addSession and getData, you need to define a function to build a model from the
basic data object.

14.1.3 Converting the data into a user model

In listing 14.3, you define the buildUser function that takes data for a single user as
a JavaScript object and creates a model by calling the User constructor. You test the
buildUser function by creating a user model with it from a JavaScript object. Add-
ing one extra exercise session for the created user produces the following output on
the console:

> 240

You’re using the User constructor from listing 14.1, so you import that by adding
an HTML script element to the project (see chapter 13), as shown first in the next
listing.

<!-- User constructor -->
<script src="http://output.jsbin.com/suzala.js"></script>

var buildUser = function (userData) {

 var user = new User(userData.name);

 userData.sessions.forEach(function (session) {
 user.addSession(
 session.sessionDate, session.duration);
 });

 return user;
};

Listing 14.2 A function to build a user model from user data (HTML)
(http://jsbin.com/zenire/edit?html,js,console)

Listing 14.3 A function to build a user model from user data
(http://jsbin.com/zenire/edit?html,js,console)

User data as a simple JavaScript object

{
 name: "Mahesha",
 sessions: [...]
}

user =

Figure 14.3 User data represented as a simple
JavaScript object

Create a new user object
with the User constructor

Add each
session

Return the newly
created user model

http://jsbin.com/zenire/edit?html,js,console
http://jsbin.com/zenire/edit?html,js,console

253The Crypt—separating map data from the game
var userData = {
 "name" : "Mahesha",
 "sessions" : [
 {"sessionDate": "2017-02-05", "duration": 120},
 {"sessionDate": "2017-02-06", "duration": 35},
 {"sessionDate": "2017-02-06", "duration": 45}
]
};

var user = buildUser(userData);

console.log(user.addSession("2017-02-15", 40));

With the buildUser function you can now upgrade plain user data, stored as a simple
JavaScript object, to an enhanced user model that hides the data as private variables but
adds methods to manage the state of the model and access a copy of the data.

14.1.4 What’s next for the fitness app?

Your team is pleased with your work on the app; you’ve fulfilled the requirements for
this chapter. The full set of requirements for the app is repeated here:

1 Retrieve user data as a string
2 Convert user data into user models
3 Display user data
4 Provide an interface for users to add sessions

You’ve completed the second requirement. You’ll work on the others later in the
book. For now, it’s back to The Crypt. Can you separate the map data from the place
models just as you separated user data from user models in the fitness app?

14.2 The Crypt—separating map data from the game
In this section you apply what you learned from working with the fitness app to The
Crypt. In particular, you complete these tasks:

1 Use a basic JavaScript object to represent map data in the game
2 Add exit challenges to the map data
3 Update the Place constructor with methods to set and get challenges
4 Write a function to build place models from the map data

Currently, you build the map for The Crypt manually within the program by calling the
Place constructor for each place you create and then by calling methods to add items
and exits.

// Create two places
var kitchen = new Place(
 "The Kitchen",
 "You are in a kitchen. There is a disturbing smell."
);

Create a JavaScript
object to hold the
user data

Call buildUser to create
a model from the data

Add a session and log
the total time returned

254 CHAPTER 14 Models: working with data
var library = new Place(
 "The Old Library",
 "You are in a library. Dusty books line the walls."
);

kitchen.addItem("a piece of cheese"); // Add items separately
library.addItem("a rusty key"); //

kitchen.addExit("south", library); // Add exits separately
library.addExit("north", kitchen); //

The map data (the descriptions of places, exits, and items) are bound up with the
JavaScript that creates the objects used by the game; the only place in the code you
can find out about map locations is inside calls to the Place constructor.

var library = new Place(
 "The Old Library", // Data inside
 "You are in a library. Dusty books line the walls." // constructor
);

Details about exits and items for places are separated from the places themselves.
 You saw in section 14.1 that data can be more easily shared when represented in a

common format; other programs and programming languages can read data format-
ted as simple JavaScript objects but don’t know about your Place objects. If you sepa-
rate the raw map data from the constructor function and methods like addItem and
addExit, it will be easier to define new maps, store them, switch them, and share them
(figure 14.4).

spacer

Player

Place

Map code

Game init

Separate the map data
from the code that builds

Place objects

Map data

spacer

Player

Place

Map builder

Game init

Map2 data

Map3 data

Switch the map data for different
adventures more easily

and share it with other apps

Current version

New version

Figure 14.4 Splitting the map data from the map builder makes it easier to switch maps.

255The Crypt—separating map data from the game

Give
m

To achieve such a separation of data and game code, you have to decide what form the
data will take and then write a function to convert the data into the Place models that
the game uses.

14.2.1 Map data

A JavaScript object with a title, a list of places, and the name of the starting place will
represent each map.

{
 "title": "The Dark House",
 "firstPlace" : "The Kitchen",
 "places" : [
 // Array of place objects
]
};

Each place within the places array will also be an object. The following snippet shows
one such place:

{
 "title" : "The Kitchen",
 "description" : "You are in a kitchen. There is a disturbing smell.",
 "items" : ["a piece of cheese"],
 "exits" : [
 { "direction" : "south", "to" : "The Old Library" },
 { "direction" : "west", "to" : "The Kitchen Garden" },
 { "direction" : "east", "to" : "The Kitchen Cupboard" }
]
};

Each exit is an object with properties for its direction and the title of the place to
which it leads. The data is compact and readable and keeps items and exits with the
places to which they belong.

 The following listing shows a section of map data. The four complete locations are
on JS Bin.

var mapData = {
 "title" : "The Dark House",
 "firstPlace" : "The Kitchen",

 "places" : [
 {
 "title" : "The Kitchen",
 "description" : "You are in a kitchen. There is a disturbing smell.",
 "items" : ["a piece of cheese"],
 "exits" : [
 { "direction": "south", "to": "The Old Library" },
 { "direction": "west", "to": "The Kitchen Garden" },

Listing 14.4 Map data
(http://jsbin.com/qonoje/edit?js,console)

each
ap a
title

Include the title of the
first location in the map

List all of the place objects
in the places array

http://jsbin.com/qonoje/edit?js,console

256 CHAPTER 14 Models: working with data
 { "direction": "east", "to": "The Kitchen Cupboard" }
]
 },
 {
 "title" : "The Old Library",
 "description" : "You are in a library. Dusty books line the walls.",
 "items" : ["a rusty key"],
 "exits" : [
 { "direction" : "north", "to" : "The Kitchen" }
]
 },
 {
 "title" : "The Kitchen Garden", /* details on JS Bin */
 },
 {
 "title" : "The Kitchen Cupboard", /* details on JS Bin */
 }
]
};

The map data is only the description of each place; the constructed Place models will
add the functionality your program expects.

14.2.2 Adding challenges to the map data

The Crypt, as it stands, lets you explore strange new worlds. You can find items in exotic
locations. You can even pick up those items and add them to your hoard. But there’s
something missing. Your adventures are more like holidays (albeit with a bit of casual
theft thrown in). You need to be challenged!

 To make the game more fun, you add challenges to exits. When trying to go in a
certain direction, you may be presented with a problem to solve. The game play will
look something like this:

> game.go("south")
 *** A zombie sinks its teeth into your neck. ***

> game.use("a piece of cheese south")
 *** The zombie is strangely resilient. ***

> game.use("holy water south")
 *** The zombie disintegrates into a puddle of putrid goo. ***

> game.go("south")
 The Old Library
 You are in The Old Library…

The challenge prevented you from going south. To overcome the challenge, you had
to use a particular item in the direction of the challenge.

game.use("holy water south")

257The Crypt—separating map data from the game
If you don’t have the required item, you have to go adventuring in a different direc-
tion, overcoming other challenges, until you find the item you need. So, how do you
create challenges in the game?

 All of the information about an adventure in The Crypt needs to be represented in
its map data. At the moment, the exits from a place are simple:

{ "direction" : "south", "to" : "The Old Library" }

They have a direction and the title of the place to which they lead. To add a challenge
to a particular exit, include a challenge property, like this:

{
 "direction" : "south",
 "to" : "The Old Library",
 "challenge" : {
 "message" : "A zombie sinks its teeth into your neck.",
 "success" : "The zombie disintegrates into a puddle of goo.",
 "failure" : "The zombie is strangely resilient.",
 "requires" : "holy water",
 "itemConsumed" : true,
 "damage" : 20
 }
}

Table 14.1 lists the properties of the challenge object along with their purpose and
whether they’re required.

To accommodate the challenges, you need to update the Place constructor.

Table 14.1 Challenge properties

Property What is it for? Required?

message The message displayed to the player when they try to go in the
direction of the exit and the challenge has not been overcome

Yes

success The message displayed to the player when they use the item
required to overcome the challenge

Yes

failure The message displayed to the player when they try to use the wrong
object to overcome the challenge

Yes

requires The item required to overcome the challenge Yes

itemConsumed If the item is removed from the player’s list of items once it is used No

damage The amount subtracted from the player’s health when they try to go
in the direction of the exit before they have overcome the challenge

No

258 CHAPTER 14 Models: working with data
14.2.3 Updating the Place constructor to include challenges

You have to update the Place model to allow for challenges. It needs an object in
which to store the challenges, and methods, addChallenge and getChallenge, for
adding and retrieving challenges for a specified direction. The next listing shows the
changes to the Place constructor.

var Place = function (title, description) {
 // other variables
 var challenges = {};

 // other methods

 this.addChallenge = function (direction, challenge) {
 challenges[direction] = challenge;
 };

 this.getChallenge = function (direction) {
 return challenges[direction];
 };
};

You create a private challenges object to store any challenges. Just like for exits,
you use directions as the keys for stored challenges. If a player must overcome a
challenge before moving south, the details of the challenge will be stored in
challenges["south"].

 To store a challenge use the addChallenge method, and to retrieve a challenge for
a specified direction use the getChallenge method.

14.2.4 Using the map data to build a game map

Your implementation of The Crypt uses models created with the Place constructor
linked with exits. Now that your map data is no longer tied up with the game logic,
you need a way to convert the map into a set of place models.

 You write a function called buildMap that takes a map data object as an argument
and creates the place models, linked by their exits. It returns the model of the first
place on the map, the starting point of the game.

var firstPlace = buildMap(mapData);

Figure 14.5 shows how the buildMap function uses forEach twice: first to create the
place models and then to join the models by adding exits.

Listing 14.5 A Place constructor with challenges
(http://jsbin.com/ruviso/edit?js,console)

Create an empty
object in which to
store any challenges

The addChallenge method
stores a challenge for a
specified direction.

The getChallenge method
returns the stored challenge
for a specified direction.

http://jsbin.com/ruviso/edit?js,console

259The Crypt—separating map data from the game
The buildMap function is shown in listing 14.6 and follows these steps:

1 Create a model for each place (buildPlace)

a Call the Place constructor with the title and description
b Add any items to the newly created place model
c Put the place model in the places store

2 Add the exits and challenges for each place (buildExits)

a Retrieve the place model from the places store
b Add an exit to the model for each exit in the place’s data
c Add a challenge for each exit in the place’s data

3 Return the model for the first place in the game

var buildMap = function (mapData) {
 var placesStore = {};

Listing 14.6 The map builder
(http://jsbin.com/paqihi/edit?js,console)

Return the place at which
the game starts

var placesStore = {};

mapData.places.forEach(buildPlace);

mapData.places.forEach(buildExits);

var buildPlace = function (placeData) {...};
var buildExits = function (placeData) {...};

return placesStore[mapData.firstPlace];

function (mapData)

firstPlace = buildMap (mapData)

firstPlace =

The return value
replaces the
function call

Create all the
place models and
add them to the
places store

Link the place
models via
their exits

Figure 14.5 First, all of the place models are created; then they’re linked via their exits.

http://jsbin.com/paqihi/edit?js,console

260 CHAPTER 14 Models: working with data

l
 var buildPlace = function (placeData) {
 var place = new theCrypt.Place(
 placeData.title,
 placeData.description
);

 if (placeData.items !== undefined) {
 placeData.items.forEach(place.addItem);
 }

 placesStore[placeData.title] = place;
 };

 var buildExits = function (placeData) {
 var here = placesStore[placeData.title];

 if (placeData.exits !== undefined) {
 placeData.exits.forEach(function (exit) {
 var there = placesStore[exit.to];
 here.addExit(exit.direction, there);
 here.addChallenge(
 exit.direction, exit.challenge);
 });
 }
 };

 mapData.places.forEach(buildPlace);
 mapData.places.forEach(buildExits);

 return placesStore[mapData.firstPlace];
};

The buildPlace function converts the data for a single place into a place model by
using the Place constructor. Remember, the game modules use a global namespace,
theCrypt (see chapter 13), so the constructor is accessed via theCrypt.Place. Before
you can link the place models via their exits, all the place models need to exist. You
call buildPlace for every place in the map data by iterating over the mapData.places
array with forEach.

mapData.places.forEach(buildPlace);

Within buildPlace, you add each place you create to the placesStore object.
 The buildExits function assigns the data for a place to a parameter, placeData,

and grabs the matching place model from placesStore.

var here = placesStore[placeData.title];

Step 1a: Call the Place
constructor with the
title and description

Step 1b: Add any items
to the newly created
place model

Step 1c: Put the place
model in the places store

Step 2a: Retrieve the place
model from the places store

Step 2b: Add an exit to the mode
for each exit in the place’s data

Step 2c: Add a challenge for
each exit in the place’s data

Start Step 1: Create a
model for each place

Start Step 2: Add the
exits for each place

Step 3: Return the model for
the first place in the game

261The Crypt—separating map data from the game
It assigns the model to the here variable. Because place models have an addExit
method, you can use here.addExit to add exits for the current model. The exits data
looks like this:

"exits" : [
 { "direction": "south",
 "to": "The Old Library",
 "challenge" : {
 "message" : "A zombie sinks its teeth into your neck.",
 "success" : "The zombie disintegrates into a puddle of goo.",
 "failure" : "The zombie is strangely resilient.",
 "requires" : "holy water",
 "itemConsumed" : true,
 "damage" : 20
 }
 },
 { "direction": "west", "to": "The Kitchen Garden" },
 { "direction": "east", "to": "The Kitchen Cupboard" }
]

So, buildExits runs through the exit data, if it exists, and calls addExit and add-
Challenge for each exit it finds.

placeData.exits.forEach(function (exit) {
 var there = placesStore[exit.to];
 here.addExit(exit.direction, there);
 here.addChallenge(exit.direction, exit.challenge);
});

The to property of each exit gives the title of the place to which the exit leads. The
place model to which the exit leads can thus be found in placesStore by using
exit.to as the key.

 You add a challenge to every exit, whether or not a challenge is present in the
map data.

here.addChallenge(exit.direction, exit.challenge);

If there’s no challenge for the exit in the map data, then exit.challenge will be
undefined. When you write code to work with challenges in chapter 16, you’ll check if
a challenge is undefined before trying to use it.

 Et voila! By calling buildPlaces and buildExits for every place, you’ve created an
interlinked map of place models for intrepid adventurers to explore. Will they find
riches and glory? Will they discover enlightenment? Or will they meet their doom?
Well, they’ll need to start somewhere, and that’s why the buildMap function returns
the place model specified as the first model on the map.

return placesStore[mapData.firstPlace];

262 CHAPTER 14 Models: working with data
You’ve successfully separated the map data from the game implementation. The data
is in a form that can be reused across projects and programming languages.

 If you follow the JS Bin link for listing 14.6, you’ll see that the full code wraps the
buildMap function in an immediately invoked function expression and assigns build-
Map to your global namespace, theCrypt. It’s the same mechanism used for all of your
modules, so it isn’t shown in the printed listing.

14.2.5 Bringing all the pieces together to run the game

The game initialization module requires a tiny tweak. Here you update the call to
buildMap, passing it the data from the new map data module.

var getGame = function () {

 var render = function () { … };

 var firstPlace = theCrypt.buildMap(theCrypt.mapData);

 var player = new theCrypt.Player("Kandra", 50);
 player.addItem("The Sword of Doom");
 player.setPlace(firstPlace);

 render();

 // Return the public interface
 return {
 go: function (direction) { … },
 get: function () { … }
 };
};

The buildMap function returns the place where the adventure begins, and that is set
as the player’s location.

 You also need to add an HTML script element to import the map data module in
The Crypt. The next listing shows the HTML panel for the latest version of the game.

<!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- Player constructor -->
<script src="http://output.jsbin.com/nubijex.js"></script>

<!-- Place constructor -->
<script src="http://output.jsbin.com/ruviso.js"></script>

<!-- map data (Kitchen example with challenge) -->
<script src="http://output.jsbin.com/jayici.js"></script>

Listing 14.7 Using the new map builder
(http://jsbin.com/mogano/edit?js,console)

Listing 14.8 Using the map builder (HTML)
(http://jsbin.com/rulayu/edit?html,console)

Pass the map data
to the buildMap
function

http://jsbin.com/mogano/edit?js,console
http://jsbin.com/rulayu/edit?html,console

263Summary
<!-- map builder -->
<script src="http://output.jsbin.com/paqihi.js"></script>

<!-- Game initialization -->
<script src="http://output.jsbin.com/mogano.js"></script>

Have a play. It should work exactly as it did before, with the two commands game.go
and game.get available. You won’t spot the zombie (although it’s there, lurking in the
shadows of the map data)—you’ll incorporate the challenges into the gameplay in
chapter 16.

 One of the aims of separating map data from the map building code was to more
easily switch between maps. So because you’ve done so well, here’s the exact same
game code but with a different map file. (It’s an old Jedi map trick!)

THE SPARROW

Map data: http://jsbin.com/woniqo/edit?js

Game: http://jsbin.com/dequzi/edit?console

You can take this whole modularization drive even further and separate the display
of players and places from the models. Chapter 15 guides you on the next leg of
your journey.

14.3 Summary
■ Represent data in a form that’s easy to reuse across projects, apps, and program-

ming languages. Simple JavaScript objects are a common format for exchang-
ing data on the web.

■ Separate the data from the program logic to make it easier to switch between
data sources.

■ Define models that enhance the data, adding functionality and hiding private
variables, ready to be used by other parts of your program.

■ Define functions to create models from the data.

http://jsbin.com/woniqo/edit?js
http://jsbin.com/dequzi/edit?console

Views: displaying data
The console isn’t the only place where you can display information for your users;
I’m pretty sure you’re keen to see how to output data on a web page! There are also
desktop and phone applications, emails, and print documents to consider. Even on
the console you may want the flexibility of a number of different formats for your
output; maybe you want a simple text version and a fancy version with boxes and
borders. You don’t want to have to rewrite large portions of your programs to
change the way they present information.

Views are focused modules of code that concentrate on displaying information.
They take data and create visual output based on it. They may include controls like but-
tons and text boxes, but you’ll leave that for part 3. Moving your display code into views
lets you switch the type of output you want or display data in multiple ways without hav-
ing to change other parts of your code, like the constructor functions for models.

 In this chapter, you create views in the context of two examples, the fitness app
and The Crypt. For the fitness app, you build a simple console view and then an
enhanced version using the spacer namespace for formatting. For The Crypt, you

This chapter covers
■ Presenting data with views
■ Removing display code from constructors
■ Passing the same model to multiple views
264

265Building a fitness app—displaying the latest user data
separate out the display code that’s currently in the Player and Place constructor
functions, moving it into new player and place views.

 All this modularization you’ve been pursuing throughout part 2 may seem like an
uphill struggle, but the flexibility it gives you to update functionality by switching simple
blocks of code in and out of a project is well worth the effort. And the views are magnificent!

15.1 Building a fitness app—displaying the latest user data
You and your team are hard at work writing a multiplatform fitness app that lets users
log their exercise. The tasks involved in building the app include:

1 Retrieving user data as a string.
2 Converting user data into user models.
3 Displaying user data.
4 Providing an interface for users to add sessions.

You’ve already managed to convert a user’s data from a simple JavaScript object into a
user model with added functionality, including addSession and getData methods
(see chapter 14). Now it’s time to work on displaying the user data.

 You’re going to create two views, code that takes a user model and displays data
from the model. Figure 15.1 shows how different views can work with the same single
model to produce different output.

Console View

Mahesha
35 minutes on February 5th
45 minutes on February 6th

1 hour 20 minutes so far.
Great work!

Enhanced View

Mahesha

35 minutes on February 5th
45 minutes on February 6th

1 hour 20 minutes so far.

* Great work! *

HTML View

<h2>Mahesha</h2>

35 minutes on February 5th
45 minutes on February 6th

<p>1 hour 20 minutes so far.</p>
<p>Great work!</p>

User Model

Figure 15.1 The same user model is used by different views to produce different output.

266 CHAPTER 15 Views: displaying data
You’re going to stick with console views for now, but in part 3 of Get Programming with
JavaScript, you’ll switch to views that generate HTML for output on a web page.

15.1.1 Creating your first fitness app view

Your first view for the fitness app is simple but effective, displaying user information
on the console that looks like this:

Mahesha
35 minutes on 2017-02-05
45 minutes on 2017-02-06

80 minutes so far
Well done!

To produce the output you need a view and a user model:

var user = new User("Mahesha"); // Create a user model
user.addSession("2017-02-05", 35);
user.addSession("2017-02-06", 45);

userView.render(user); // Pass the model to a view for display

In the listing 15.1 you define and immediately invoke a function that creates the user
view, returning a simple interface object. You assign the interface to the userView vari-
able. To test the view you call userView.render, which produces the display shown
previously.

var User = function (name) { /* unchanged from ch14 - on JS Bin */ };

var userView = (function () {

 var getInfo = function (userData) {
 var infoString = "\n" + userData.name + "\n";

 userData.sessions.forEach(function (session) {
 infoString += session.duration + " minutes on ";
 infoString += session.sessionDate + "\n";
 });

 infoString += "\n" + userData.total + " minutes so far";
 infoString += "\nWell done!\n";

 return infoString;
 };

 var render = function (user) {
 console.log(getInfo(user.getData()));
 };

Listing 15.1 A simple user view
(http://jsbin.com/goqinep/edit?js,console)

Use a function
expression to create
a local scope

Define a function that
builds a string of info
from user data

Define the render function to
log the info for a user model

Pass the data from the
user model to getInfo

http://jsbin.com/goqinep/edit?js,console

267Building a fitness app—displaying the latest user data
 return {
 render: render
 };

})();

var user = new User("Mahesha");
user.addSession("2017-02-05", 35);
user.addSession("2017-02-06", 45);

userView.render(user);

You wrap the view code in an immediately invoked function expression to create a
local scope, hiding implementation details, without the need for an extra global vari-
able. (See chapter 13 for more on IIFEs and the perils of global pollution.)

 The User constructor for user models from chapter 14 is included at the start of
the listing. The user model provides a getData method that returns a simple Java-
Script object:

{
 "name" : "Mahesha",
 "total" : 80,
 "sessions" : [
 { "sessionDate" : "2017-02-05", "duration" : 35 },
 { "sessionDate" : "2017-02-06", "duration" : 45 }
]
}

The view’s getInfo function uses that data object to build the string of information
shown before the listing.

 But why stop at one view when you can have two?

15.1.2 Using modules to switch fitness app views

Ultimately, you’ll present a number of views to your team from which they’ll choose
the best to go into production with the fitness app. The second view you add to your
portfolio uses the formatting functions from the spacer namespace to add borders
and boxes to the view’s output. It’s called fitnessApp.userViewEnhanced, and you can
see the view’s code as a module on JS Bin:http://jsbin.com/puculi/edit?js,console. It
produces output like this:

Mahesha

35 minutes on 2017-02-05
45 minutes on 2017-02-06

80 minutes so far

* Well done! *

Return a simple interface
object that gives access to
the render function Immediately invoke

the enclosing
function expression

Create a user model
and add two sessions

Display user info

http://jsbin.com/puculi/edit?js,console

268 CHAPTER 15 Views: displaying data
(The code for the second view is similar to the first. Here, I’m more interested in
showing how multiple views can be used, so I’ve omitted the second view’s code from
the book.)

 The next listing shows the HTML script elements used to import the spacer and
fitnessApp modules. Notice, two view modules are imported.

<!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- fitnessApp.User -->
<script src="http://output.jsbin.com/fasebo.js"></script>

<!-- fitnessApp.userView -->
<script src="http://output.jsbin.com/yapahe.js"></script>

<!-- fitnessApp.userViewEnhanced -->
<script src="http://output.jsbin.com/puculi.js"></script>

The following listing shows the JavaScript used to test the two views you’ve created.

var user = new fitnessApp.User("Mahesha");
user.addSession("2017-02-05", 35);
user.addSession("2017-02-06", 45);

fitnessApp.userView.render(user);

fitnessApp.userViewEnhanced.render(user);

What lovely views! They both work well, displaying data from the same user model, so
it will be easy to use whichever your team chooses. And it will be easy for you or others
on the team to create more views if needed (that web view would be nice) without hav-
ing to touch the user model code.

15.1.3 What’s next for the fitness app?

You’ve created user models from data and displayed that data in a number of ways
using views. Your next job is to give users a simple way to log their exercise sessions at
the console, getting the views to re-render the display as the data changes. You’ll do
that by creating a fitness app controller in chapter 16.

15.2 The Crypt—moving view code from Player and Place
In the last section you saw how to create a view from scratch. You had a user model that
provided data, and you wrote view code to display the data. In this section you work
with existing models, Player and Place, from The Crypt. The code to display model

Listing 15.2 Testing two user views (HTML)
(http://jsbin.com/vamuzu/edit?html,js,console)

Listing 15.3 Testing two user views
(http://jsbin.com/vamuzu/edit?html,js,console)

Create a user model
and add two sessions

Test the first user view

Test the enhanced user view

http://jsbin.com/vamuzu/edit?html,js,console
http://jsbin.com/vamuzu/edit?html,js,console

269The Crypt—moving view code from Player and Place
data is currently mixed in with the models themselves. Figure 15.2 shows all of the
modules in the current and new versions of the game. To change to the new version,
you’ll separate the display code from the Player and Place models, creating two views,
playerView and placeView.

 You’ll update players first and then places.

15.2.1 Creating a view for players

On the left of figure 15.3 are the functions currently defined in the Player model,
before you make any changes. As it stands, the model includes six functions (on the
top left) for the display of player information. You want the model to be concerned
only with the management of player data, not with its display. The right of figure 15.3

Map data

spacer

Player

Place

Map builder

Game init

New version

Map data

spacerPlayer

playerView

Place

placeView

Map builder

Game init

Current version Move the view code into its own modules

Figure 15.2 Move the view functions from the Player and Place models into their own modules

addItem removeItem

applyDamagehasItem

setPlace getPlace

getData

getNameInfo

getHealthInfo

getItemsInfo

addItem

setPlace getPlace

getTitleInfo

getInfo

showInfo

Player

playerView

Player

Move display functions
to their own module

Keep the data
management functions

in the Player model

getNameInfo

getHealthInfo

getItemsInfo

getTitleInfo

getInfo

render

Before

After

Figure 15.3 Move the display functions from the Player model into their own module.

270 CHAPTER 15 Views: displaying data
shows an updated Player model with some extra methods to be added as well as a new
module called playerView, concerned only with the display of player information.
You create those two modules now.

THE MODEL

Models are more than just data. They provide methods for managing the data—add-
ing, deleting, updating—and can prevent direct access to the data. To create a player
model you call the Player constructor with the new keyword.

var player = new Player("Jahver", 80);

Listing 15.4 shows the new Player constructor. Although you don’t want the Player
model to bother with the display of its data, you do need to make that data available to
any view that requires it. You still want to protect the private data from cheeky tweaks,
so you create a method, getData, that returns a copy of the data. The data returned
will look like this:

{
 "name" : "Jahver",
 "health" : 80,
 "items" : ["a rusty key"],
 "place" : "The Crypt"
}

In order to work with challenges in chapter 16, you add three more methods to the
Player constructor: hasItem, removeItem, and applyDamage. If you head to JS Bin
and run the code for the new constructor, you can perform the following actions at
the console prompt (responses of undefined have been left out):

 Create a player, add a couple of items, and get the player’s data:

> var p = new theCrypt.Player("Dax", 10)
> p.addItem("a key")
> p.addItem("a lamp")
> p.getData()
 [object Object] {
 health: 10,
 items: ["a key", "a lamp"],
 name: "Dax"
 }

Use the new item methods to check if the player has an item and to remove an item:

> p.hasItem("a key")
 true
> p.hasItem("a sword")
 false
> p.removeItem("a key")
> p.getData().items
 ["a lamp"]

271The Crypt—moving view code from Player and Place
Apply damage to the player and check their health:

> p.applyDamage(2)
> p.getData().health
 8
> p.applyDamage(10)
> p.getData().health
 -2

(function () {

 var Player = function (name, health) {
 var items = [];
 var place = null;

 this.addItem = function (item) {
 items.push(item);
 };

 this.hasItem = function (item) {
 return items.indexOf(item) !== -1;
 };

 this.removeItem = function (item) {
 var itemIndex = items.indexOf(item);
 if (itemIndex !== -1) {
 items.splice(itemIndex, 1);
 }
 };

 this.setPlace = function (destination) {
 place = destination;
 };

 this.getPlace = function () {
 return place;
 };

 this.applyDamage = function (damage) {
 health = health - damage;
 };

 this.getData = function () {
 var data = {
 "name" : name,
 "health" : health,
 "items" : items.slice()
 };

 if (place !== null) {
 data.place = place.title;
 }

Listing 15.4 The Player constructor
(http://jsbin.com/yaneye/edit?js,console)

Return true if the
specified item is in
the items array

Remove the
specified item from
the items array

Subtract the specified
damage from the
player’s health

Define a method to return a
copy of the model’s data

Use the slice method with no
arguments to copy the items array

Include the title of the player’s
location if one has been assigned

http://jsbin.com/yaneye/edit?js,console

272 CHAPTER 15 Views: displaying data
 return data;
 };
 };

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }
 theCrypt.Player = Player;

})();

The Player constructor no longer assigns any display methods to the models it cre-
ates. The methods that are left from the previous version, addItem, setPlace, and
getPlace, are purely for managing the player data the model holds. The display meth-
ods have been moved to the new view object.

 Both hasItem and removeItem use the indexOf array method. If a specified item is
in the items array, indexOf will return the index of that item. If the item is not in the
array, indexOf will return -1.

["a key", "a lamp"].indexOf("a lamp"); // 1 -> second item in array
["a key", "a lamp"].indexOf("a sword"); // -1 -> not in array

The removeItem method also uses splice to remove an item from the items array.

items.splice(itemIndex, 1);

The first argument to splice is the index in the array at which to start removing
items. The second argument is the number of items to remove. In removeItem, you
want to remove a single specified item, so the second argument to splice is 1.

THE VIEW

Your player view will re-create the representation that used to be generated by the
player objects themselves. To display a player, you call the view’s render method, pass-
ing the player model as an argument:

theCrypt.playerView.render(kandra);

The render method calls getInfo, the function that builds up a string of player infor-
mation, and displays the string returned on the console:

**
* Kandra (50) *
**
 Items:
 - a rusty key
 - a piece of cheese
**

The next listing shows the code for playerView. The interface assigned to theCrypt
.playerView has the single method, render.

Return the data object

273The Crypt—moving view code from Player and Place
(function () {

 var getNameInfo = function (playerData) {
 return playerData.name;
 };

 var getHealthInfo = function (playerData) {
 return "(" + playerData.health + ")";
 };

 var getItemsInfo = function (playerData) {
 var itemsString = "Items:" + spacer.newLine();

 playerData.items.forEach(function (item, i) {
 itemsString += " - " + item + spacer.newLine();
 });

 return itemsString;
 };

 var getTitleInfo = function (playerData) {
 return getNameInfo(playerData) + " " + getHealthInfo(playerData);
 };

 var getInfo = function (playerData) {
 var info = spacer.box(
 getTitleInfo(playerData), 40, "*");
 info += " " + getItemsInfo(playerData);
 info += spacer.line(40, "*");
 info += spacer.newLine();

 return info;
 };

 var render = function (player) {
 console.log(getInfo(player.getData()));
 };

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

 theCrypt.playerView = {
 render: render
 };

})();

render is the only function that produces any output that the user can see, logging
the generated player information string to the console. In it, you pass the player’s data
to getInfo, and it passes the data on to the helper functions that each build a part of
the overall information string.

 You’ve split the player model from the player view. You’ll see in chapter 17 how
easy it is to change the view so it displays the player information on a web page rather

Listing 15.5 A player view
(http://jsbin.com/zucifu/edit?js,console)

Use the player
data to build up
a string of info

Pass a copy of the
player’s data to getInfo

Set the render
method as a property
of playerView

http://jsbin.com/zucifu/edit?js,console

274 CHAPTER 15 Views: displaying data
than on the console. First, you follow the steps you used for players to create a model
and a view for places in The Crypt.

15.2.2 Creating a view for places

Just as you did for players in the last section, you rewrite the constructor function for
places so that it creates models that hold the data for each place and that provide
some methods for manipulating that data. The models will also have a getData
method so that views can get hold of a copy of each place’s data for display. Then you
create a view to log place data on the console. Figure 15.4 shows how the old model
code will be split to form the new.

THE MODEL

Listing 15.6 shows a new version of the Place constructor, with its presentation
code removed and a getData method added. The data returned by getData will
have this form:

{
 "title" : "The Old Library",
 "description" : "You are in a dusty library. Books line the walls.",
 "items" : ["a rusty key"],
 "exits" : ["west", "up"]
}

The other methods are unchanged from previous incarnations of the constructor.

getData

getExitsInfo

getItemsInfo

getTitleInfo

getInfo

showInfo

Place

placeView

Place

Move display functions
to their own module

Keep the data
management functions

in the Place model

Before

After

addItem

addExit getExit

addChallenge getChallenge

getLastItem addItem

addExit getExit

addChallenge getChallenge

getLastItem

getExitsInfo

getItemsInfo

getTitleInfo

getInfo

render

Figure 15.4 Move the display functions from the Place model into their own module

275The Crypt—moving view code from Player and Place
(function () {

 var Place = function (title, description) {
 var exits = {};
 var items = [];
 var challenges = {};

 this.addItem = function (item) {
 items.push(item);
 };

 this.getLastItem = function () {
 return items.pop();
 };

 this.addExit = function (direction, exit) {
 exits[direction] = exit;
 };

 this.getExit = function (direction) {
 return exits[direction];
 };

 this.addChallenge = function (direction, challenge) {
 challenges[direction] = challenge;
 };

 this.getChallenge = function (direction) {
 return challenges[direction];
 };

 this.getData = function () {
 var data = {
 "title" : title,
 "description" : description,
 "items" : items.slice(),
 "exits" : Object.keys(exits)
 };

 return data;
 };
 };

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

 theCrypt.Place = Place;

})();

Each place model links to destinations. The destinations are also place models. The
destinations are stored in a place model’s exits object. The keys of the exits object
are the directions of the destinations. For example, exits["south"] might be the
place model with a title property of "The Old Library". The Object.keys method

Listing 15.6 A simplified Place constructor
(http://jsbin.com/vuwave/edit?js,console)

Define a method to
return a copy of
the place’s data

Use Object.keys to assign
an array of directions to
the exits property

Return the
data object

http://jsbin.com/vuwave/edit?js,console

276 CHAPTER 15 Views: displaying data
returns all of the keys of an object as an array. So, Object.keys(exits) returns all of
the directions of exits from the current place, for example, ["south", "east", "west"].

 The getData method in the Place constructor returns a copy of some of the
data about a place, including an array of exit directions generated by using Object
.keys(exits). The view will use that array to display the available exits from which
players can choose to continue their adventures.

THE VIEW

Listing 15.7 shows the code for the place view module. How it works should be pretty
familiar by now. It produces output on the console like this:

===============
= The Kitchen =
===============
You are in a kitchen. There is a disturbing smell.

Items:
 - a piece of cheese

Exits from The Kitchen:
 - east
 - south
==

(function () {

 var getItemsInfo = function (placeData) {
 var itemsString = "Items: " + spacer.newLine();
 placeData.items.forEach(function (item) {
 itemsString += " - " + item;
 itemsString += spacer.newLine();
 });
 return itemsString;
 };

 var getExitsInfo = function (placeData) {
 var exitsString = "Exits from " + placeData.title;
 exitsString += ":" + spacer.newLine();

 placeData.exits.forEach(function (direction) {
 exitsString += " - " + direction;
 exitsString += spacer.newLine();
 });

 return exitsString;
 };

 var getTitleInfo = function (placeData) {
 return spacer.box(placeData.title, placeData.title.length + 4, "=");
 };

Listing 15.7 A place view
(http://jsbin.com/royine/edit?js,console)

Pass the place’s data
to the helper functions

http://jsbin.com/royine/edit?js,console

277The Crypt—moving view code from Player and Place
 var getInfo = function (placeData) {
 var infoString = getTitleInfo(placeData);
 infoString += placeData.description;
 infoString += spacer.newLine() + spacer.newLine();
 infoString += getItemsInfo(placeData) + spacer.newLine();
 infoString += getExitsInfo(placeData);
 infoString += spacer.line(40, "=") + spacer.newLine();
 return infoString;
 };

 var render = function (place) {
 console.log(getInfo(place.getData()));
 };

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

 theCrypt.placeView = {
 render: render
 };

})();

Just like the view module for players, the view for places calls some helper functions,
in this case getItemsInfo, getExitsInfo, and getTitleInfo, from a main display
function, getInfo, to build up a string of information about a model. The render
function is the only one that produces output that the user can see, displaying the
assembled place information on the console.

 You now have model constructors and views for players and places. The data and
the presentation of the data have been separated. The models are concerned only
with the manipulation of the data and have nothing to do with its display. The views
are concerned only with displaying the data and have nothing to do with changing it.

 The views have been written to be used in the same way. They both have a render
method that’s passed the model to be displayed, as shown in the following snippet:

// Create some models
var kandra = new Player("Kandra", 50);
var library = new Place("The Library", "You are in a dusty library.");

// Use views to display the model info
playerView.render(kandra);
placeView.render(library);

As well as displaying information about players and places, you need to display mes-
sages to users as they play the game. They probably want to know if they’ve been bitten
by a zombie or lacerated by a leopard!

Pass the place’s
data to the main
getInfo function

Call getData to get
a copy of the place
model’s data

278 CHAPTER 15 Views: displaying data
15.3 Talking to players—a message view
As adventurers make their way around The Crypt, you need to let them know what’s
going on. You use the player view to give them updates on their health and the items
they carry. You use the place view to display each place’s title and description and to
list its items and exits. You also need a way of displaying feedback when the players
attempt an invalid action or succumb to their injuries.

> game.go("north")
 *** There is no exit in that direction ***
> game.get("a piece of cheese")
 *** That item is not here ***
> game.use("a lamp north")
 *** That doesn’t help. The door is still locked. ***

To handle such messages, you create a message view. Like your other views, it has a sin-
gle method in its public interface, render. You pass the text to be displayed to the
render method:

theCrypt.messageView.render("That item is not here.");

The next listing shows the code for the view. The local getMessageInfo function
returns a string for display, and the render function logs it to the console.

(function () {

 var getMessageInfo = function (messageData) {
 return "*** " + messageData + " ***";
 };

 var render = function (message) {
 console.error(getMessageInfo(message));
 };

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

 theCrypt.messageView = {
 render: render
 };

})();

You use the console.error method in the render function. It’s similar to console
.log but developers use it to flag errors in programs. The console normally displays
errors differently from standard logged messages. The errors are often shown in red.
That suits your purposes for displaying messages to players on the console.

Listing 15.8 A message view
(http://jsbin.com/jatofe/edit?js,console)

Format the message to
make it seem urgent

Use console.error to log
the message as an error

http://jsbin.com/jatofe/edit?js,console

279Summary
 In chapter 14 you added challenges to the map data for The Crypt. You’ll use the mes-
sage view to display the various success and failure messages associated with each chal-
lenge. Knowing when to show those messages requires some code that checks user
actions against challenges, updates player and place models as a result, and uses views to
display the latest state of the game. You need controllers. Chapter 16 has you covered.

15.4 Summary
■ Create views to display data from models.
■ Maintain a separation of concerns where models manipulate data and views dis-

play data.
■ Create multiple views to display the same model data in different ways.
■ Keep the interface consistent for all views. For example, all of the views in this

chapter have a render method as their interface. They can all be called the
same way:

 fitnessApp.userView.render(user);
 fitnessApp.userViewEnhanced.render(user);
 theCrypt.playerView.render(player);
 theCrypt.placeView.render(place);
 theCrypt.messageView.render(message);

Controllers:
linking models and views
Part 2 of Get Programming with JavaScript has been about organizing your code. As
your programs grow, that organization pays dividends, making it easier to focus
on individual pieces, switch modules to alter functionality, and reuse code in mul-
tiple projects.

 Breaking programs into modules encourages you to give each module a specific
task. Chapters 14, 15, and 16 form a trilogy, with each chapter looking at a common
task a module might perform. You met models in chapter 14 and views in chapter 15
and now you link them with controllers.

 To see controllers in action and how they act on user input to manage models
and update views, you continue your work on two projects: the fitness app and The
Crypt. In the fitness app, users will log sessions of exercise, and in The Crypt, players
will face puzzles to solve as they explore perilous places. But will they escape before
their health reaches zero?

This chapter covers
■ Acting on user input
■ Updating models in response to user actions
■ Passing updated models to views for display
■ Completing the console version of The Crypt
280

281Building a fitness app—controllers
16.1 Building a fitness app—controllers
Your team members have been telling friends and family about the fitness app you’re
creating and they have a list of people lined up to test it out; they’re a super-keen
bunch and have been diligently logging their exercise on paper. Your work has gone
well so far—what’s left to do? Here are the requirements set out by the team:

1 Retrieve user data as a string.
2 Convert user data into user models.
3 Display user data.
4 Provide an interface for users to add sessions.

You’ve completed tasks 2 and 3, building models in chapter 14 and views in chapter 15.
Task 1 involves retrieving data across the internet—you’ll work on that in part 3. That
leaves task 4—you need to provide a simple way for those eager fitness fanatics to log
the sessions of exercise they complete.

 You decide to provide a single command for users of the app to log their activity:

app.log("2017-02-07", 50)

The users call the app.log method, passing in the date of their session and the dura-
tion of their exercise in minutes. But how does that command reach the user model?
And how does the view know to update the display? That’s the job of the controller.

16.1.1 What does the controller do?

The controller orchestrates the other pieces of the program, reacting to user input
and updating the models and views. Figure 16.1 shows the modules that your fitness
app will load when opened in JS Bin. You already have data, the User constructor, and
views from chapters 14 and 15. You need to create a controller to handle the interac-
tions between the different parts.

Figure 16.2 shows how your controller is involved in initializing the app, using the
User constructor to build a user model from the data. And when the app is running,
the controller reacts to users calling app.log by adding the logged session to the user
model and then passing the updated model to the view for display.

 You know what the controller needs to do; how will you make it do it?

1. Four modules are loaded

Load

Data Constructor View Controller

Figure 16.1 The four modules of the fitness app

282 CHAPTER 16 Controllers: linking models and views
16.1.2 Building the fitness app controller

The snippets that follow show the kind of code you’d expect to see in the controller:

var user = buildUser(userData); // Convert user data into a user model.

> app.log("2017-02-08", 50) // When the user logs a session

user.addSession("2017-02-08", 50); // the controller adds it to the model

fitnessApp.userView.render(user); // and updates the view.

The first listing shows the full code for the controller.

(function () {

 var buildUser = function (userData) {
 var user = new fitnessApp.User(userData.name);

 userData.sessions.forEach(function (session) {
 user.addSession(session.sessionDate, session.duration);
 });

 return user;
 };

 var init = function (userData) {

 var user = buildUser(userData);

 fitnessApp.userView.render(user);

Listing 16.1 The fitness app controller
(http://jsbin.com/goniro/edit?js,console)

View

Model

Controllerlog("2017-02-08", 50)

Controller ModelData

2. The controller uses the User constructor to build a user model from the data

3. The controller updates the model based on user input

4. The controller passes the updated model to the view for display

Initialize

Use

Figure 16.2 The tasks the controller performs in the fitness app

Define a function to
build a user model
from user data

Define an init function
that initializes the app

Build a model from the
user data and assign it
to the user variable

Pass the new user model
to the view for display

http://jsbin.com/goniro/edit?js,console

283Building a fitness app—controllers
 return {
 log: function (sessionDate, duration) {
 user.addSession(sessionDate, duration);
 fitnessApp.userView.render(user);
 return "Thanks for logging your session.";
 }
 };
 };

 if (window.fitnessApp === undefined) {
 window.fitnessApp = {};
 }

 fitnessApp.init = init;

})();

When the controller module is loaded, it adds its init function to the fitnessApp
namespace. You’ll be able to start the app by calling init and passing it the user data.

var app = fitnessApp.init(fitnessApp.userData);

The init function returns an interface with a single method, log. By assigning the
returned interface to app, you let users record their sessions by calling app.log.

16.1.3 Putting the pieces together for a working fitness app

Listings 16.2 and 16.3 show the HTML and JavaScript for the fitness app on JS Bin.
Running the program lets you log a session like this:

> app.log("2017-02-08", 55)

The controller adds your logged session to the user model and passes the updated
model to the view, producing this output:

Mahesha
35 minutes on 2017-02-05
45 minutes on 2017-02-06
55 minutes on 2017-02-08

135 minutes so far
Well done!

Thanks for logging your session.

The following listing uses HTML script elements to load your four fitness app mod-
ules. The modules share properties, objects, and functions by assigning them to the
fitnessApp namespace.

Return an
interface with a
single method, log

Make the init method
available by adding it to
the fitnessApp namespace

284 CHAPTER 16 Controllers: linking models and views
<!-- fitnessApp.userData -->
<script src="http://output.jsbin.com/tenuwis.js"></script>

<!-- fitnessApp.userView -->
<script src="http://output.jsbin.com/yapahe.js"></script>

<!-- fitnessApp.User -->
<script src="http://output.jsbin.com/fasebo.js"></script>

<!-- fitnessApp.controller -->
<script src="http://output.jsbin.com/goniro.js"></script>

The next listing shows the single line of JavaScript needed to initialize the program
and make the app.log method available to users.

var app = fitnessApp.init(fitnessApp.userData);

Run the program and have a go at logging some sessions.

16.1.4 What’s next for the fitness app?

The last step for your app is to grab user data as text from across the internet and then
convert that text into a JavaScript object ready to pass to fitnessApp.init. You’ll
return to your work on the app in chapter 20.

16.2 The Crypt—adding a game controller
Okay, this is it for The Crypt in part 2 of Get Programming with JavaScript. By the end of
the chapter, you’ll have a working console app with challenges for players to overcome
and the danger of their health falling to zero, ending the game. There’s one more
piece of the puzzle needed to get the game fully working: a controller.

 You have the data, the models, and the views for The Crypt. The controller is the
module that ties everything together. It feeds the map data to the map builder and
passes the model data to the views. It provides the interface that users will access to
play the game and responds to player commands. That’s quite a lot of jobs for one
game module, so it’s worth taking a minute to see how it fits in with the other modules
that make up The Crypt.

 Figure 16.3 shows all of the modules that make up The Crypt. The Controller mod-
ule has replaced the module that used to be labelled “Game init.” Now that you’re
working with models and views, it’s more appropriate to call the module a controller.
But why? What does the controller do?

Listing 16.2 The fitness app (HTML)
(http://jsbin.com/huxuti/edit?html,js,console)

Listing 16.3 The fitness app
(http://jsbin.com/huxuti/edit?js,console)

http://jsbin.com/huxuti/edit?js,console
http://jsbin.com/huxuti/edit?html,js,console

285The Crypt—adding a game controller
16.2.1 What does the controller do?

Your controller will initialize the game and act on user input while the game is run-
ning, updating models and views in response to the players’ actions.

INITIALIZE THE GAME

When the game first loads, the controller will:

1 Use the Place constructor to build place models from the map data.
2 Use the Player constructor to build a player model.
3 Assign the place specified as first in the map data as the player’s location.
4 Provide a UI.

Steps 1 and 2 are shown in figure 16.4.

Player

Place

playerView

placeView

messageView

Controller

Utility

spacer

Map data

Map builder

Map

Model Constructors

Views

Controller

Figure 16.3 The modules that make up The Crypt

Controller

Place Models

Player Model

Map Data

Use the Place constructor to build
place models from the map data

Initialize

Use the Player constructor
to build a player model

Figure 16.4 When the game loads, the controller builds the player and place models.

286 CHAPTER 16 Controllers: linking models and views
ACT ON USER INPUT

While the game is running, the controller will:

1 Check that player actions are valid.
2 Update player and place models.
3 Pass updated models to views for display.
4 Pass feedback messages to the message view.
5 Stop the game if the player’s health reaches zero.

Steps 2, 3, and 4 are shown in figure 16.5.

The player model includes a getPlace method that the controller uses to access the
player’s current location (notice how the Place model is connected to the Player
model in figure 16.5).

16.2.2 Approaching the controller code

You’ve seen what the controller does in The Crypt and are ready to explore the code
that makes it work. Even though you’ve seen a lot of the code before, presenting it as
one long listing can make it seem more daunting than it deserves, so your exploration
is broken across sections.

■ (16.3) The overall structure of the controller
■ (16.4) Initializing the game, monitoring player health, updating the display,

and ending the game
■ (16.5) Handling player commands and challenges—get, go, and use
■ (16.6) Running the game

Let the games begin!

Player View

Place View

Player Model

Place Model

Controller

game.go("south")

game.get()

game.use("holy water south")

Update the models
based on user input

Pass updated models
to the views for display

While the game is running

Pass feedback messages
Message Viewto the message view

Figure 16.5 The controller responds to user actions and updates models and views.

287The Crypt—starting and stopping the game

he
16.3 The Crypt—the structure of the controller code
As you’ve seen, the controller has a number of tasks to perform to start, monitor, and
end a game in The Crypt. To help you get a feel for how the parts make up the whole,
listing 16.4 omits the function bodies and focuses on the variables in the code. You
can see the full listing, function bodies and all, by following the link to JS Bin, and the
code is also shown in the sections that follow in this chapter.

(function () {

 var player;
 var inPlay = false;

 var init = function (mapData, playerName) {
 /* Listing 16.5 */
 };

 var checkGameStatus = function () { /* 16.6 */ };

 var render = function () { /* 16.7 */ };
 var renderMessage = function (message) {/*16.7*/};

 var get = function () { /* 16.8 */ };
 var go = function (direction) { /* 16.9 */ };
 var use = function (item, direction) {/*16.10*/};

 window.game = {
 get: get,
 go: go,
 use: use,
 init: init
 };

})();

Listing 16.4 also includes comments pointing you to the listings in this chapter that
investigate the missing function bodies.

 It’s time to start the game! And stop it! And monitor player health! And update the
display! (Sorry for the excitement, but the full game is so close.)

16.4 The Crypt—starting and stopping the game
While the main game action takes place in the get, go, and use functions, you also
need to easily start and stop the game and keep the display updated with the latest
info. And now that players are facing cruel challenges, challenges that may drain their
health, you need to check that they are still hale and hearty enough to carry on.

Listing 16.4 The game controller
(http://jsbin.com/yeqicu/edit?js)

Use inPlay to flag when
the game is over

Build the map, create a
player, and start the game

Check if
player

alth has
dropped

to zero

Call the views to
update the display

Respond to user
commands

Assign the
interface to game,
a global variable

http://jsbin.com/yeqicu/edit?js

288 CHAPTER 16 Controllers: linking models and views
16.4.1 Initializing the game

To get the game started, it needs to be initialized by calling the init method.

game.init(map, playerName);

init builds the map, creates the player model, sets the player’s location to the cor-
rect place, and then displays the player and place information, as shown in the fol-
lowing listing.

var player;
var inPlay = false;

var init = function (mapData, playerName) {
 var firstPlace = theCrypt.buildMap(mapData);

 player = new theCrypt.Player(playerName, 50);
 player.addItem("The Sword of Doom");
 player.setPlace(firstPlace);

 inPlay = true;

 render();
};

You declare the player and inPlay variables outside the init function so other func-
tions in the controller can access them. The buildMap function returns the starting
place in the game, and then you set that place as the player’s current location. The
init function calls render to display the starting place and player information.

 The render, get, go, and use functions use the inPlay variable. They perform
their usual tasks only when inPlay is true. When a player’s health drops to zero, the
controller sets inPlay to false. For that to happen, you have to keep an eye on the
player’s health.

16.4.2 Monitoring player health

Whenever a player takes damage, you need to check if their health has reached zero,
because that’s “Game over, man. Game over!” The controller’s checkGameStatus func-
tion does the checking, setting the isPlay variable to false if the player has suc-
cumbed to the litany of zombie bites, leopard lacerations, and nasty splinters they
encounter, as shown in the next listing.

Listing 16.5 The init function
(http://jsbin.com/yeqicu/edit?js)

Declare a variable to record
if the game is running

Build the map, storing
the starting location

Set up the
player

Update inPlay: the
game is now running

Display the place
and player

http://jsbin.com/yeqicu/edit?js

289The Crypt—starting and stopping the game
var checkGameStatus = function () {
 if (player.getData().health <= 0) {
 inPlay = false;
 renderMessage("Overcome by your wounds...");
 renderMessage("...you fall to the ground.");
 renderMessage("- Your adventure is over -");
 }
};

The condition uses the less than or equal to comparison operator, <=, to check if the
health is less than or equal to zero.

player.getData().health <= 0

If the player has died, you stop the game and display a final message. If they’re fit
enough to carry on, checkGameStatus does nothing.

16.4.3 Updating the display—functions that use the view modules

Rather than calling the render methods of view modules directly, the controller uses
its own functions. This makes it easier to switch to different view modules if required
because the views are referenced in only one place, as shown in the following listing.

var render = function () {
 console.clear();
 if (inPlay) {
 theCrypt.placeView.render(player.getPlace());
 theCrypt.playerView.render(player);
 }
};

var renderMessage = function (message) {
 theCrypt.messageView.render(message);
};

The init function gets things started, and then checkGameStatus, render, and render-
Message are used throughout the game. The main action comes from the get, go, and
use functions, with go and use making some tricky decisions based on items, exits,
and challenges. It’s time to investigate the player commands—make it so!

Listing 16.6 Checking if health has dropped to zero
(http://jsbin.com/yeqicu/edit?js)

Listing 16.7 Updating the display
(http://jsbin.com/yeqicu/edit?js)

Use getData to grab
the player’s data and
check their health

Stop the game
by setting inPlay
to false

Clear the display

Update the place and
player display only if
the game is in play

http://jsbin.com/yeqicu/edit?js
http://jsbin.com/yeqicu/edit?js

290 CHAPTER 16 Controllers: linking models and views
16.5 The Crypt—giving commands and solving puzzles
Users are permitted to take only a small set of actions when exploring The Crypt. The
controller module assigns the following interface to the global window object:

window.game = {
 get: get,
 go: go,
 use: use,
 init: init
};

The user initiates actions in the game by calling the game controller interface meth-
ods at the console (game.get() or game.go("south"), for example). The game con-
troller then creates, accesses, or updates models in response to the user’s instructions
and passes changed models to the views for display.

 You’ve already looked at the init function; this section (16.5) steps through the
get, go, and use functions. The get function hasn’t evolved much, but the go function
now checks for challenges. And use is a completely new function.

16.5.1 Picking up items with game.get

Players exploring The Crypt will find items as they travel from place to place. The items
will help them to overcome challenges they may face. The get method gives them a
way of picking up the items they find, as shown next.

var get = function () {
 if (inPlay) {

 var place = player.getPlace();
 var item = place.getLastItem();

 if (item !== undefined) {

 player.addItem(item);

 render();

 } else {
 renderMessage("There is no item to get");
 }

 } else {
 renderMessage("The game is over!");
 }
 return "";
};

Listing 16.8 The get function
(http://jsbin.com/yeqicu/edit?js)

Get an item only if the
game is still active

Retrieve the last item from
the player’s current location

If an item was retrieved,
add it to the player’s list

Update the display to
show the item has moved

If inPlay is false, let
the player know

http://jsbin.com/yeqicu/edit?js

291The Crypt—giving commands and solving puzzles
An item is removed from the end of the place’s list of items and added to the player’s
list of items. If the place has no items, getLastItem will return undefined.

 Both the go and use functions involve checking challenges. A quick refresher is
in order.

16.5.2 Listing the properties of a challenge

You’re keen on the idea of challenges and want to add a splash of jeopardy. Players
have had a health property right from the start of the book; you’re ready to do das-
tardly damage to players as they meekly move around your maze.

 You first saw challenges in The Crypt when developing map data in chapter 14, but
you haven’t put them to use until now. Two of the player commands, go and use,
check for challenges in a specified direction, so it’s worth reminding yourself of the
properties that make up a challenge:

"challenge" : {
 "message" : "A zombie sinks its teeth into your neck.",
 "success" : "The zombie disintegrates into a puddle of goo.",
 "failure" : "The zombie is strangely resilient.",
 "requires" : "holy water",
 "itemConsumed" : true,
 "damage" : 20
}

Table 16.1 lists the properties of the challenge object along with their purpose and
whether they are required.

Table 16.1 Properties of the challenge object

Property What is it for? Required?

message The message displayed to the player when they try to go in the
direction of the exit and the challenge has not been overcome.

Yes

success The message displayed to the player when they use the item
required to overcome the challenge.

Yes

failure The message displayed to the player when they try to use the
wrong object to overcome the challenge.

Yes

requires The item required to overcome the challenge. Yes

itemConsumed If the item is removed from the player’s list of items once it
is used.

No

damage The amount subtracted from the player’s health when they try
to go in the direction of the exit before they have overcome
the challenge.

No

complete Whether the challenge has been completed. Usually missing in
the initial data, it’s set to true during the game when a chal-
lenge is solved.

No

292 CHAPTER 16 Controllers: linking models and views
To retrieve a challenge from a place object, call getChallenge, specifying a direction:

place.getChallenge("south");

If there’s no challenge in that direction, getChallenge returns undefined. The first
command that uses challenges is game.go.

16.5.3 Moving with game.go

Players use the controller’s go function to move from place to place. But if a lock or a
leap or a leopard blocks their path, the controller needs to let them know. Players call
go, specifying the direction in which they wish to travel:

> game.go("south")

The full go function is shown here. A walkthrough of the code follows the listing.

var go = function (direction) {
 if (inPlay) {

 var place = player.getPlace();
 var destination = place.getExit(direction);
 var challenge = place.getChallenge(direction);

 if (destination === undefined) {
 renderMessage("There is no exit in that direction");
 } else {

 if ((challenge === undefined) || challenge.complete) {

 player.setPlace(destination);
 render();

 } else {

 if (challenge.damage) {
 player.applyDamage(challenge.damage);
 }

 render();

 renderMessage(challenge.message);

 checkGameStatus();
 }
 }

 } else {
 renderMessage("The game is over!");
 }
 return "";
};

Listing 16.9 The go function
(http://jsbin.com/yeqicu/edit?js)

Collect the
info needed

If there’s no challenge or it’s
complete, move the player
and update the display

Apply any damage
caused by the challenge

Update the display showing
any changes to health

Show the initial
challenge message

Check if the player’s health
has dropped to zero

http://jsbin.com/yeqicu/edit?js

293The Crypt—giving commands and solving puzzles
The function starts by collecting the information it needs to act on the player’s request:

var place = player.getPlace();
var destination = place.getExit(direction);
var challenge = place.getChallenge(direction);

It could be that there’s no exit in the direction the player specified. You need to check
for that:

if (destination === undefined) {
 renderMessage("There is no exit in that direction");
} else {
 // Check for challenges
}

Okay, say the player isn’t walking into a wall and there’s an exit in the direction speci-
fied. If there’s no challenge, or if the player has completed the challenge, you can
move them to the destination.

if ((challenge === undefined) || challenge.complete) {
 player.setPlace(destination);
 render();
} else {
 // Mention the leopard
 // and apply any damage.
}

The || symbol in the if condition is the logical OR operator. It lets you check a con-
dition made up of two expressions at once. If either the first expression, challenge
=== undefined, or the second expression, challenge.complete, evaluates to true,
then the whole condition is true. If both expressions evaluate to false, then the
whole condition is false. (JavaScript also has a logical AND operator, &&, that evalu-
ates to true if both expressions are true, and false otherwise.)

 If the player hasn’t completed a challenge, you need to apply any damage that the
challenge causes (bumps, bruises, leopard bites, and so on).

if (challenge.damage) {
 player.applyDamage(challenge.damage);
}

Finally, update the display to show any changes to health, show the challenge’s ini-
tial message, and check that the player’s health is still above zero—the game remains
in play.

render();
renderMessage(challenge.message);
checkGameStatus();

That takes care of player peregrinations. But what if there is a big, hungry cat blocking
the path? How can players lick the leopard?

294 CHAPTER 16 Controllers: linking models and views
16.5.4 Licking the leopard with game.use

If a lock or a leap or a leopard blocks a player’s path, the player can call the control-
ler’s use function to overcome the challenge. They specify the item to use and the
direction in which to use it:

> game.use("a ball of wool", "south")
 *** The leopard chases the ball of wool, purring loudly. ***

The full use function is shown in listing 16.10. It has a number of nested if state-
ments, but don’t worry: the key decisions are shown in figure 16.6, and you venture
down the rabbit hole to see how it works following the listing.

Is there a challenge
in that direction?

Does the player
have the item?

Is it the correct
item for the challenge?

Is the item used
up by the challenge?

Yes

No

No

No

Yes

Yes

Yes

renderMessage(
 "You don't need to use that there"
);

renderMessage(
 "You don't have that item"
);

renderMessage(challenge.failure);

*** The leopard snarls. ***

renderMessage(challenge.success);
challenge.complete = true;

player.removeItem(item);

game.use("a ball of wool", "south")

*** The leopard chases the ball
of wool, purring loudly. ***

Figure 16.6 The key decisions made by the use function

295The Crypt—giving commands and solving puzzles

e

var use = function (item, direction) {
 if (inPlay) {

 var place = player.getPlace();
 var challenge = place.getChallenge(direction);

 if ((challenge === undefined) || challenge.complete){
 renderMessage("You don't need to use that there");
 } else {

 if (player.hasItem(item)) {

 if (item === challenge.requires) {

 renderMessage(challenge.success);
 challenge.complete = true;

 if (challenge.itemConsumed) {
 player.removeItem(item);
 }

 } else {
 renderMessage(challenge.failure);
 }

 } else {
 renderMessage("You don't have that item");
 }

 } else {
 renderMessage("The game is over!");
 }
 return "";
};

The function starts by collecting the information it needs to act on the player’s request:

var place = player.getPlace();
var challenge = place.getChallenge(direction);

It could be that there’s no challenge in the direction the player specified. You need to
check for that:

if ((challenge === undefined) || challenge.complete) {
 renderMessage("You don't need to use that there");
} else {
 // There is a challenge to be overcome.
}

Listing 16.10 The use function
(http://jsbin.com/yeqicu/edit?js)

Get the challenge for
the specified direction

Check if the challeng
is complete or
doesn’t exist

Check if the player has
the item specified

Check if the
item is the

one required
to overcome

the challenge

Display the success message and
mark the challenge as complete

Remove the item from the
player if it’s consumed by
the challenge

Display the failure
message if the player
has used the wrong item

Let the player know they
don’t have the item
they’re trying to use

http://jsbin.com/yeqicu/edit?js

296 CHAPTER 16 Controllers: linking models and views
Some players are sneaky! You need to check that they have the item they’re trying to
use. If they don’t, send them a polite message:

if (player.hasItem(item)) {
 // Check it’s the right item
} else {
 renderMessage("You don't have that item");
}

Okay, so they’re using an item they have against an actual challenge. Is it the right tool
for the job? Let them know if it’s not:

if (item === challenge.requires) {
 // Complete the challenge
} else {
 renderMessage(challenge.failure);
}

And finally, at the bottom of the rabbit hole, if they’ve passed all the checks, complete
the challenge:

renderMessage(challenge.success);
challenge.complete = true;

if (challenge.itemConsumed) {
 player.removeItem(item);
}

Well done; you made it through the get, go, and use function wonderland. The pieces
aren’t too taxing, but when you have deeply nested ifs and buts, they can get quite
hairy. Throw yourself a tea party! But don’t be late for section 16.6—that’s where your
adventure really begins.

16.6 The Crypt—running the game
To get the game running, you need to include all of the modules you’ve created and
then call the game.init method, passing it the map data and the player’s name. Fig-
ure 16.7 shows all of the modules involved.

Player

Place

playerView

placeView

messageView

Controller

Utility

spacer

Map data

Map builder

Map

Model Constructors

Views

Controller

Figure 16.7 The many modules of The Crypt

297The Crypt—running the game
The next listing shows the HTML script elements used to load the modules.

<script>
 console.log("Loading The Crypt ...");
</script>

<!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- Place constructor -->
<script src="http://output.jsbin.com/vuwave.js"></script>

<!-- Player constructor -->
<script src="http://output.jsbin.com/nonari.js"></script>

<!-- player view -->
<script src="http://output.jsbin.com/zucifu.js"></script>

<!-- place view -->
<script src="http://output.jsbin.com/royine.js"></script>

<!-- message view -->
<script src="http://output.jsbin.com/jatofe.js"></script>

<!-- map data -->
<script src="http://output.jsbin.com/hozefe.js"></script>

<!-- map builder -->
<script src="http://output.jsbin.com/paqihi.js"></script>

<!-- game controller -->
<script src="http://output.jsbin.com/yeqicu.js"></script>

The HTML includes an initial script element that’s different from the rest. It has no
src attribute. Rather than linking to a file to load, it includes the JavaScript directly
between the script tags. The module files can take a moment to load, so it’s nice to
give players feedback that something is happening. Putting the code in the HTML lets
it run straight away; no need to wait for a file to load.

 The following listing shows the code needed to get things up and running.

var playerName = "Jahver";
var map = theCrypt.mapData;

game.init(map, playerName);

Hide the JavaScript panel, run the game, and start exploring! Be careful though; chal-
lenges chip away at your health.

Listing 16.11 Loading the game modules (HTML)
(http://jsbin.com/fociqo/edit?html,console)

Listing 16.12 Running the game
(http://jsbin.com/fociqo/edit?js,console)

Let players know the
modules are loading

http://jsbin.com/fociqo/edit?js,console
http://jsbin.com/fociqo/edit?html,console

298 CHAPTER 16 Controllers: linking models and views
16.7 The Crypt—what’s next for the app?
Congratulations! You’ve created a working console-based adventure game with swappa-
ble maps and a modular architecture (a fancy way of saying it’s made up of lots of bits).

 Part 2 of Get Programming with JavaScript was all about organizing your code to bet-
ter cope with larger programs. Your knowledge of private variables, modules, models,
views, and controllers equips you to cope with more ambitious projects. By sticking to
the console, you were able to focus on the key JavaScript language concepts; now it’s
time to make the jump to HTML and web interfaces. As you’ll see, the work you’ve
done building a well-organized program will make your first steps as a web developer
much easier.

16.8 Summary
■ Use a controller to manage the models and the views. The controller updates the

models in response to user input and passes data from the models to the views
for display.

Part 3

JavaScript in the browser

Up to this point in Get Programming with JavaScript, you’ve been using the
console as the way of interacting with your programs. You’ve been able to focus
on the JavaScript code. Now it’s time to start using a web page as the user inter-
face, using HyperText Markup Language (HTML) to specify headings, paragraphs,
and list items for presentation; and buttons, drop-down lists, and text boxes for
user input. You use templates as an efficient way to generate HTML from your
data and XMLHttpRequest objects to load extra data for your web pages.

 Part 3 shows you how to organize files on your own computer rather than on
JS Bin and suggests some next steps as you continue your JavaScript adventure.
The Crypt gets an HTML makeover and the ability to load locations one at a time
as players explore the worlds you create for them.

HTML:
building web pages
JavaScript is associated with adding interactivity to web pages: reacting to users
clicking buttons and selecting from drop-down menus, for example, and updating
parts of a page with new content. Having learned the fundamentals of the lan-
guage, you’re almost ready to take that step to interactivity and dynamic content.
Your focus is still on JavaScript, but you need to learn enough HTML to see how
JavaScript can be used to create and manipulate the content of a web page. JS Bin
still has you covered while you learn; you can add HTML and view the resulting web
page in the Output panel. In chapter 21 you’ll see how to move on from the JS Bin
sandbox and organize your own HTML, CSS, and JavaScript files.

 You’ve spent a lot of time building The Crypt in a modular fashion. That work
pays off in this chapter when you see how easy it is to switch from displaying output

This chapter covers
■ Using HTML to display static content
■ Tags, elements, and attributes
■ Common HTML elements
■ Manipulating web page content with JavaScript
■ Switching to HTML-based views in The Crypt
301

302 CHAPTER 17 HTML: building web pages
on the console to displaying it on a web page. It will just take a few lines of code—it’s
almost magical.

17.1 HTML, CSS, JavaScript—building a web page
You want to build a movie reviews web page, My Movie Ratings, that displays informa-
tion about your favorite movies and lets you rate them (figure 17.1). To build the page
you use three languages:

■ HTML—You use HTML to annotate the text of the page and specify media to
be loaded; headers, paragraphs, lists, images, and buttons are all specified with
HTML. This is your base layer, the essential content, the information you want
visitors to find and read.

■ CSS—You use the Cascading Style Sheets language to specify the look of the
page, its colors, fonts, margins, borders, and so on. This is your presentation
layer, a visual treat that enhances the content.

■ JavaScript—You use the JavaScript language to add interactivity to the page; you
respond to button clicks, filter content, load extra data, and pop-up messages
with JavaScript. This is your behavior layer, a subtle dash of user interface magic
that smooths the way and can improve the user’s experience and efficiency.

Figure 17.1 includes three screenshots of the My Movie Ratings page and shows how
the CSS and JavaScript layers build on the HTML foundation.

Figure 17.1 CSS and JavaScript build on the HTML content with enhanced presentation and interactivity.

303HTML, CSS, JavaScript—building a web page
Even without CSS and JavaScript, on the left of figure 17.1, the key information about
the movie is accessible. The CSS adds visual styles, a sense of identity, and (hopefully)
design that guides and delights the visitor. Finally, on the right, the figure shows a mes-
sage that has been popped up using JavaScript after a user clicked the Rate button.

 Take a look at your My Movie Ratings pages on JS Bin. There’s the base HTML ver-
sion at http://jsbin.com/sayayim/edit?output and the version with CSS and JavaScript
at http://jsbin.com/hikuzi/edit?output. (You may have to run the JavaScript to make
the Rate button work.)

17.1.1 Loading the layers

If you had your own website, jahvers.crypt, you’d load the My Movie Ratings web page
by pointing your browser at the page’s URL, jahvers.crypt/movies.html, say. The
browser loads the HTML document, movies.html, sent by the server at that address.
The movies.html document may contain CSS and JavaScript code within it, between
style and script tags, respectively:

<head>
 <title>My Movie Ratings</title>

 <style>
 /* CSS goes here */
 </style>

 <script>
 /* JavaScript goes here */
 </script>
</head>

<body>
 <!-- Page content for display goes here -->
</body>

Don’t worry about all the HTML tags for now; we cover them in section 17.2. You’re
well aware of the benefits of modularization (that’s what part 2 was all about!), so
you’ll be pleased to know that HTML documents can load CSS files as well as Java-
Script files:

<head>
 <title>My Movie Ratings</title>

 <link rel="stylesheet" href="movies.css" />
 <script src="movies.js"></script>
</head>

<body>
 <!-- Page content for display goes here -->
</body>

You’ve seen the script tags for loading JavaScript modules before; the link tag
does a similar job for loading CSS. When your browser is reading through your HTML

http://jsbin.com/sayayim/edit?output
http://jsbin.com/hikuzi/edit?output

304 CHAPTER 17 HTML: building web pages
document, ready to display it, it will load the CSS and JavaScript files it finds speci-
fied by the link and script elements. You’ll take a proper look at organizing your
own HTML, CSS, and JavaScript files in chapter 21. For now, JS Bin does the work
for you.

17.1.2 Loading the layers in JS Bin

When working on your projects, or bins, on JS Bin, you can add code to three panels:
HTML, CSS, and JavaScript. JS Bin automatically merges the code from the three pan-
els, embedding the CSS and JavaScript into the HTML and showing the resulting web
page on its Output panel.

 You won’t spend much time working on CSS in Get Programming with JavaScript, but
where it’s used in examples, you can always take a look at the CSS panel yourself; the
code used is mostly straightforward. You return to JavaScript in section 17.3, after say-
ing a brief hello to HTML.

17.2 HTML—a very short introduction
For My Movie Ratings, your movie reviews website, you want headings, lists of actors
and directors, a choice of possible ratings, and a button to submit your verdict. You
need a way of specifying that this text is a heading but that text is a list item; here’s a
drop-down list and there’s a button. You’re not on the console anymore, Dorothy—
you’ve left the monochrome world of spaces and new-line characters and entered the
wonderful, colorful land of HTML. (Rest assured. There are no flying monkeys in
this chapter.)

 You use HTML to annotate text and to identify media that you want to embed in
a document. The annotations specify the role that each section of text plays within
the structure of the document. The media can be images, video, audio, or some
other format.

 The markup itself takes the form of tags. In a document, a section of text might be
a heading, a paragraph, a list item, or a quotation, for example, and there are tags to
mark up those sections of text. Here’s a heading and a paragraph, each marked up
with an opening and closing tag:

<h1>My Movie Ratings</h1>

<p>Brief info about my favorite movies.</p>

You wrap each section of text with an opening and closing tag. The heading has <h1>
and </h1>, the paragraph <p> and </p>. Together, each opening and closing tag pair
specifies an element. The h1 tags specify a heading element; the p tags specify a para-
graph element.

 When a web browser loads an HTML document, it sees the tags and creates the
corresponding element in its model of the page in memory. The tags specify what type
of element to create and the text between the tags forms the content of the element.

305HTML—a very short introduction
17.2.1 Starting with an empty page
Before you start adding content to pages, take a look at the HTML that constitutes a
bare-bones web page. If you create a new bin on JS Bin and view the HTML panel,
you’ll see the following markup. (I’ve reformatted it slightly.)

<!DOCTYPE html>

<html>
 <head>
 <meta charset="utf-8">
 <title>JS Bin</title>
 </head>

 <body>

 </body>
</html>

The DOCTYPE in the first line gives the browser information about the version of
HTML you’re using and helps it decide how to process and display the page. HTML
has evolved over the years, and a number of versions and variations are specified by
complicated-looking document type declarations. Fortunately, <!DOCTYPE html> is a
neat shorthand for the latest version (currently HTML5).

 You wrap the whole document, after the document type, in html tags. Within the
document, there are two sections, head and body. The head section contains informa-
tion about the document: its title and character encoding. The body section is where the
main content of the page goes—the content that will be displayed to the user when they
visit the web page. All of your pages will use the same basic structure shown here.

17.2.2 Adding some content
Figure 17.2 shows some text for My Movie Ratings added between the body tags of a
new JS Bin document. The text has been marked up with appropriate HTML tags to
denote headings, subheadings, and paragraphs.

Figure 17.2 The hierarchy of headings and the paragraphs

306 CHAPTER 17 HTML: building web pages
The browser represents the hierarchy of headings, h1, h2, h3, by using different font sizes.
The following listing shows the HTML used between the body tags for the web page.

<body>

 <h1>My Movie Ratings</h1>

 <p>Brief info about my favorite movies.</p>

 <h2>Movies</h2>

 <h3>Inside Out</h3>

 <p>An emotional adventure inside the head of a young girl.</p>

</body>

17.2.3 Marking up a list

Each movie includes a list of actors and a list of directors. Use the li tag to mark up
list item elements. A single list item for an actor looks like this:

Amy Poehler

The list items need to be part of a list. You can have an ordered list, if the order of the
items matters, or an unordered list, if it doesn’t. Use ol tags for an ordered list and ul
tags for an unordered list. Figure 17.3 shows the output for lists of actors and direc-
tors. Listing 17.2 shows the new code.

Listing 17.1 My Movie Ratings—headings and paragraphs (HTML)
(http://jsbin.com/nosiwi/edit?html,output)

Put the content to be displayed on
the web page between the body tags

Use an h1 tag for the
main heading on a page

Use heading tags h2, h3, and so on for
headings of decreasing importance

Wrap paragraphs in p tags

Figure 17.3 The browser renders the ordered list with numbers and the unordered list with bullets.

http://jsbin.com/nosiwi/edit?html,output

307HTML—a very short introduction
<body>

 <h1>My Movie Ratings</h1>
 <p>Brief info about my favorite movies.</p>

 <h2>Movies</h2>

 <h3>Inside Out</h3>
 <p>An emotional adventure inside the head of a young girl.</p>

 <h4>Actors</h4>

 Amy Poehler
 Bill Hader

 <h4>Directors</h4>

 Pete Doctor
 Ronnie del Carmen

</body>

As you can see in figure 17.3, the browser automatically adds numbers for an ordered
list and bullets for an unordered list.

17.2.4 Some common HTML elements

Figure 17.4 is a screenshot of a web page made up of some common HTML elements.
The content of each element describes the element. You can visit the page on JS Bin:
http://jsbin.com/nuriho/edit?html,css,output.

 The tags used to create the page in figure 17.4 are shown in table 17.1. There are
plenty more HTML tags, but these are enough for you to work with for now.

Listing 17.2 Ordered and unordered lists (HTML)
(http://jsbin.com/vegahe/edit?html,output)

Table 17.1 Some common HTML elements for wrapping content

Tag Element What is it for?

<h1> Heading Main heading for a document or part of a document

<h2>…<h6> Subheading Subheadings in decreasing order of importance

<p> Paragraph Paragraphs

<div> Division Wraps a set of elements that belong together as a section of a
document

Use ul tags to create
an unordered list

Put each of the list items between
opening and closing li tags

Use ol tags to create
an ordered list

http://jsbin.com/vegahe/edit?html,output
http://jsbin.com/nuriho/edit?html,css,output

308 CHAPTER 17 HTML: building web pages
 Ordered list Wraps a set of list items where the order of the items is impor-
tant (e.g., a numbered list)

 Unordered list Wraps a set of list items where the order of the items is not
important (e.g., a bulleted list)

 List item Wraps a single item in an ordered or unordered list

<head> Head Wraps elements that provide meta-information about a document
and load extra code needed by the document

<body> Body Wraps the main content of the page, the content that is displayed
directly on the web page

Table 17.1 Some common HTML elements for wrapping content (continued)

Tag Element What is it for?

Figure 17.4 A web page with self-describing HTML elements

309Adding content to a web page with JavaScript
17.3 Adding content to a web page with JavaScript
Looking for ways to add interest to the site, you decide to welcome visitors to your My
Movie Ratings web page with a random greeting. To test out the idea, you create a
minimal page. Figure 17.5 shows what you’re aiming for, with four visits to the page
producing four different greetings.

 Refreshing the page generates a new random greeting. Try it out on JS Bin at
http://output.jsbin.com/mikura.html. The next two listings show how to create the
page. Run the JavaScript to make the message appear.

<p id="greeting">Welcome!</p>

 function getGreeting () {
 var hellos = [
 "Nanu nanu!",

Listing 17.3 Adding content to a paragraph with JavaScript (HTML)
(http://jsbin.com/mikura/edit?html,js,output)

Listing 17.4 Adding content to a paragraph with JavaScript
(http://jsbin.com/mikura/edit?html,js,output)

Figure 17.5 Random greetings from a web page

Create an array
of greetings

http://output.jsbin.com/mikura.html
http://jsbin.com/mikura/edit?html,js,output
http://jsbin.com/mikura/edit?html,js,output

310 CHAPTER 17 HTML: building web pages
 "Wassup!",
 "Yo!",
 "Hello movie lover!",
 "Ay up me duck!",
 "Hola!"
];

 var index = Math.floor(Math.random() * hellos.length);

 return hellos[index];
 }

 function updateGreeting () {
 para.innerHTML = getGreeting();
 }

 var para = document.getElementById("greeting");

 updateGreeting();

To generate the effect, you follow these steps:

1 Assign an id to an element in the HTML
2 Use the id to get a reference to the element in JavaScript
3 Use the reference to update the element’s contents

17.3.1 Getting an element by its id

You display the greeting in a paragraph element. To set the greeting, you need to get
hold of a reference to that paragraph in JavaScript. You give the HTML element a
unique id attribute:

<p id="greeting">Welcome!</p>

To get a reference to the element in a JavaScript program, you use the document.get-
ElementById method, passing the id of the element as an argument:

var para = document.getElementById("greeting");

The web browser makes the document object available to your JavaScript code. The
document object has properties and methods that allow you to interact with the hierar-
chy of elements on a page.

 You obtained a reference to the paragraph element by using document.get-
ElementById. Having assigned the reference to the para variable, you can now use
para to manipulate the element. You update the content of the paragraph by setting
the element’s innerHTML property.

para.innerHTML = "Ay up me duck!";

Generate a
random index
from zero to one
less than the
length of the array

Get a reference to
the paragraph

Set the content of the paragraph
to a random greeting

311Displaying data from an array
The original content of the paragraph is replaced and becomes

<p id="greeting">Ay up me duck!</p>

17.3.2 Function declarations

You’re now using function declarations rather than function expressions when defin-
ing named functions for later use.

var sayHello = function () { //
 console.log("Hello"); // function expression assigned to variable
}; //

function sayHello () { //
 console.log("Hello"); // function declaration
} //

Function declarations were mentioned in chapter 4 as an alternate syntax for defining
functions. You’ve been using expressions up until now to be consistent with the assign-
ment of values, objects, arrays, and functions to variables.

var num = 4;
var movie = {};
var actors = [];
var getRating = function () {};

It’s more common to see function declarations for named functions, so you’ve
switched to declarations for part 3 of Get Programming with JavaScript.

17.3.3 What, no JavaScript?

Occasionally, visitors will arrive at your site on devices that either don’t have JavaScript
or have it disabled. Or they’ll be on a slow network, maybe at a hotel or on a train,
where it takes longer (much longer!) to load any JavaScript modules for the page. If
your page relies on JavaScript to display its content, visitors may be presented with an
empty space. Whenever possible, consider including initial content in the page so that
visiting is not a useless waste of time. Content should be available to everyone, with the
extra flexibility, fluidity, and flashiness that JavaScript brings layered on top for those
whose devices can handle it.

 For your random greeting test, you included a greeting, “Welcome!”, in the initial
HTML (listing 17.3). A random greeting is a nice bit of fun but isn’t essential.

 Having seen how to add some text to a paragraph, you now step things up and add
a whole series of elements at once.

17.4 Displaying data from an array
Each movie on My Movie Ratings has a title and a one-line summary. Figure 17.6 shows a
list of three movies on the site.

312 CHAPTER 17 HTML: building web pages
Given some movie data, you can loop through the movies and insert them into an exist-
ing element on the page. The movie data looks like this:

var moviesData = [
 {
 "title" : "Inside Out",
 "summary" : "An emotional adventure inside the head of a young girl."
 },
 {
 "title" : "Tomorrowland",
 "summary" : "Recreating the hope and wonder of previous generations."
 },
 {
 "title" : "The Wizard of Oz",
 "summary" : "Strangers find friendship and strength on a long walk."
 }
];

You place a div element with an id of movies on the page, as shown in the following
listing. Use div elements as containers to collect groups of related elements together.

<body>
 <h1>My Movie Ratings</h1>

 <div id="movies"></div>
</body>

Each movie will be a list item in an unordered list. The browser automatically adds the
bullets for list items in an unordered list. The next listing shows the JavaScript used to
display the movies.

Listing 17.5 Building HTML with JavaScript (HTML)
(http://jsbin.com/jakowat/edit?html,js,output)

Figure 17.6 A list of movies

http://jsbin.com/jakowat/edit?html,js,output

313Displaying data from an array
var moviesData = [/* As above */];

function getMovieHTML (movie) {
 var html = "<h3>" + movie.title + "</h3>";
 html += "<p>" + movie.summary + "</p>";
 return html;
}

function getMoviesHTML (movies) {
 var html = "";

 movies.forEach(function (movie) {
 html += "" + getMovieHTML(movie) + "";
 });

 return "" + html + "";
}

function render (movies) {
 var moviesDiv = document.getElementById("movies");
 moviesDiv.innerHTML = getMoviesHTML(movies);
}

render(moviesData);

The getMovieHTML method builds up the HTML for a single movie by sandwiching
the properties of the movie object between appropriate opening and closing tags.

var html = "<h3>" + movie.title + "</h3>";
html += "<p>" + movie.summary + "</p>";

The getMoviesHTML method iterates over the array of movies, building up the HTML
for all of the movies as it goes. It uses getMovieHTML to get the HTML for each movie,
wrapping the returned strings in li tags to create list item elements.

movies.forEach(function (movie) {
 html += "" + getMovieHTML(movie) + "";
});

It then wraps the HTML for the list of items in opening and closing ul tags for an
unordered list and returns the complete HTML string.

return "" + html + "";

The getMoviesHTML function returns HTML that looks like the following (but without
the line breaks and extra spaces):

 <h3>Inside Out</h3>

Listing 17.6 Building HTML with JavaScript
(http://jsbin.com/jakowat/edit?html,js,output)

Use the getMovieHTML
function to generate a string
of HTML for a single movie

Use the getMoviesHTML
function to generate a string
of HTML for an array of movies

Wrap the response from
getMovieHTML in li tags
to create a list item

Wrap all list items in an
unordered list with ul tags

Update the innerHTML of the
element with an id of movies

Call the render method,
passing it the data it needs

http://jsbin.com/jakowat/edit?html,js,output

314 CHAPTER 17 HTML: building web pages
 <p>An emotional adventure inside the head of a young girl.</p>

 <h3>Tomorrowland</h3>
 <p>Recreating the hope and wonder of previous generations.</p>

 <h3>The Wizard of Oz</h3>
 <p>Strangers find friendship and strength on a long walk.</p>

The render method is the one that changes the page. It gets a reference to the target
div on the page and sets its innerHTML property with the HTML string returned by
getMoviesHTML.

var moviesDiv = document.getElementById("movies");
moviesDiv.innerHTML = getMoviesHTML(movies);

To reduce the number of global variables, you could wrap the getMovieHTML, get-
MoviesHTML, and render functions in an immediately invoked function expression
(IIFE—see chapter 13) that returns just render in its interface. The listing has been
kept simple to help focus on the generation of HTML and how to update an element
on a web page.

17.5 The Crypt—displaying players and places with
web views
You’ve split the program for The Crypt across multiple modules, sections of code that
can be loaded independently. The modules perform different tasks: you have data,
models, views, and a controller (figure 17.7).

Player

Place

playerView

placeView

messageView

Controller

Utility

spacer

Map data

Map builder

Map

Model Constructors

Views

Controller

Figure 17.7 The modules that make up The Crypt

315The Crypt—displaying players and places with web views
The promise of modules is that you can switch them easily to change the behavior of
the program. It’s time to make good on that promise. To build your first HTML ver-
sion of The Crypt, follow these steps:

1 Update the player view (two lines of code)
2 Update the place view (two lines of code)
3 Create an HTML page that has script elements to load all of the game mod-

ules and that has placeholders for the player and place views to fill

You won’t see the output until all of the pieces are in place. But to get a sense of what
you’re building, figure 17.8 shows your first HTML game in action. The web page output
shows the current states of the player and place. You enter commands at the console.

Before looking at the updated versions of the player and place views, take time to con-
sider the awesome power of your modular approach. The single method that displays
information for each view is the render method. To reflect its beauty and simplicity, it
gets the following section all to itself.

17.5.1 Updating the player and place view modules—the render method

In moving from a console application to a web application, you update the player and
place views. The new versions display information by inserting text into an element on
a web page rather than logging the information to the console. Those are the only
changes you make (figure 17.9), and the changes themselves are small.

Figure 17.8 The Crypt with commands and messages on the Console panel and updates on the Output panel

316 CHAPTER 17 HTML: building web pages
The views in chapter 15 use console.log in a single method, the render method.
That was by design; you have a single place where changes need to be made.

 The render method for the console-based player view looks like this:

function render (player) {
 console.log(getInfo(player.getData()));
};

The render method for the console-based place view looks like this:

function render (place) {
 console.log(getInfo(place.getData()));
};

Using what you’ve learned in this chapter about updating web page elements, the new
place view’s render method looks like this:

function render (place) {
 var placeDiv = document.getElementById("place");
 placeDiv.innerHTML = getInfo(place.getData());
};

The new player view’s render method looks almost identical:

function render (place) {
 var playerDiv = document.getElementById("player");
 playerDiv.innerHTML = getInfo(player.getData());
};

Those really are the only changes to the JavaScript that you need. The new methods
use document.getElementById to get references to elements on the web page. Until
you create the web page in listing 17.9, those elements won’t exist, so you can’t test
your new views. Be patient; their time will come.

Player

Place

playerView

placeView

messageView

Controller

Utility

spacer

Map data

Map builder

Map

Model Constructors

Views

Controller

To switch from a console-based
to a web-based game, simply

update the views

Figure 17.9 You only need to change the views to switch to a web-based version of The Crypt.

317The Crypt—displaying players and places with web views
17.5.2 Updating the player and place view modules—the listings

Listing 17.7 shows the new player view with its updated render method. Everything
else is the same as it’s been since chapter 15, so function bodies have been omitted in
print. The JS Bin link is there so you can check the full listing if you want. The mean-
ing of "use strict" is discussed after the listings for both views.

(function () {
 "use strict";

 function getNameInfo (playerData) { … }
 function getHealthInfo (playerData) { … }
 function getItemsInfo (playerData) { … }
 function getTitleInfo (playerData) { … }
 function getInfo (playerData) { … }

 function render (player) {

 var playerDiv = document.getElementById("player");

 playerDiv.innerHTML = getInfo(player.getData());

 }

 if (window.theCrypt === undefined) { window.theCrypt = {}; }
 theCrypt.playerView = { render: render };
})();

The next listing shows the new place view with its updated render method.

(function () {
 "use strict";

 function getItemsInfo (placeData) { … }
 function getExitsInfo (placeData) { … }
 function getTitleInfo (placeData) { … }
 function getInfo (placeData) { … }

 function render (place) {

 var placeDiv = document.getElementById("place");

 placeDiv.innerHTML = getInfo(place.getData());

 }

 if (window.theCrypt === undefined) { window.theCrypt = {}; }
 theCrypt.placeView = { render: render };
})();

Listing 17.7 A web-based player view
(http://jsbin.com/cehexi/edit?js,console)

Listing 17.8 A web-based place view
(http://jsbin.com/cakine/edit?js,console)

Update the render
method to work with
web page elements

Get a reference to
the div element
with an id of
“player”

Set the content
of the div to the
string produced
by the getInfo
method

Update the render
method to work with
web page elements

Get a reference to
the div element
with an id of
“place”

Set the content
of the div to the
string produced
by the getInfo
method

http://jsbin.com/cehexi/edit?js,console
http://jsbin.com/cakine/edit?js,console

318 CHAPTER 17 HTML: building web pages
Those changes to the render methods are all you need to move the display of player
and place information to the web page from the console. For now, the user continues
to give commands via the console.

17.5.3 Using JavaScript’s strict mode

JavaScript is in use on millions of web pages. Those pages need to continue working
even as JavaScript evolves and matures. To opt into more recent ways of using the lan-
guage that alert you to more errors you might have made, optimize how the language
works, and prepare the way for further developments, you can run your code in strict
mode. To enable strict mode for a function, add "use strict" at the top of the function.

 All of your code throughout the book could have been run in strict mode, but I felt
it might be distracting while learning the basics. Modules in part 3 will all be in strict
mode; listing 17.8 is the first module in part 3, which is why it’s being introduced at
this point. Find out more at www.room51.co.uk/js/strict-mode.html.

17.5.4 Loading modules and adding placeholders in the HTML

The next listing shows the complete HTML for your first web-based version of The
Crypt. It includes script tags to load all of the modules you need.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>The Crypt</title>
</head>

<body>
 <h1>The Crypt</h1>

 <div id="place"></div>

 <div id="player"></div>

 <!-- Modules -->

 <!-- spacer -->
 <script src="http://output.jsbin.com/juneqo.js"></script>

 <!-- Place constructor -->
 <script src="http://output.jsbin.com/vuwave.js"></script>
 <!-- Player constructor -->
 <script src="http://output.jsbin.com/nonari.js"></script>

 <!-- player view -->
 <script src="http://output.jsbin.com/cehexi.js"></script>
 <!-- place view -->
 <script src="http://output.jsbin.com/cakine.js"></script>
 <!-- message view -->
 <script src="http://output.jsbin.com/jatofe.js"></script>

Listing 17.9 A web-based The Crypt game (HTML)
(http://jsbin.com/zaxaje/edit?html,console,output)

Update the
title element

Include a div with an id of
“place” for place information

Include a div with an id of
“player” for player information

Load all of the modules
needed to run the game

http://jsbin.com/zaxaje/edit?html,console,output
http://www.room51.co.uk/js/strict-mode.html

319The Crypt—displaying players and places with web views
 <!-- map data -->
 <script src="http://output.jsbin.com/hozefe.js"></script>
 <!-- map builder -->
 <script src="http://output.jsbin.com/paqihi.js"></script>

 <!-- game controller -->
 <script src="http://output.jsbin.com/yeqicu.js"></script> </body>
</html>

You set the title of the page using a title element in the head section. The page title
isn’t always visible when working in the JS Bin editing environment but is normally
used by browsers to label tabs and windows showing the page and when saving the
page as a bookmark or favorite. The script tags for loading modules are added just
before the closing body tag. This ensures that the two div elements used by the pro-
gram are on the page before any code tries to update them with player and place
information.

 Unfortunately, because your views use the spacer namespace to format the gener-
ated text with line breaks and spaces for the console, and web pages don’t honor
those line breaks and spaces, all of the player and place information runs together.
Although the output isn’t quite what you wanted, you can still play the game, as shown
in figure 17.10.

17.5.5 Adding a touch of CSS

You have one more panel up your sleeve on JS Bin! The CSS panel is used for specify-
ing how you want elements to look on a page: their size, color, margins, borders, and
so on. With a couple of lines of CSS, you can tell the browser to honor the line breaks
generated by your view modules and use a font that gives the same amount of space to
each character, just like the font on the console.

 The next listing shows the code to add to the CSS panel.

Figure 17.10 The text output runs together but the game is playable.

320 CHAPTER 17 HTML: building web pages
div {
 white-space: pre;
 font-family: monospace;
}

The first rule tells the browser to preserve the white space (that is, spaces and line
breaks) of text content in div elements. The second specifies that the browser should use
a monospace font for text in div elements. Your page uses div elements for the player
information and for the place information. The output on the web page is now format-
ted as it was on the console. Refer to figure 17.8 to see the nicely formatted output.

17.5.6 Playing the game

You still issue game instructions via the console as methods of game. The methods
available are get, go, and use. Run the program at http://jsbin.com/toyahi/edit?con-
sole,output and have a go at playing the game, issuing commands on the console
like this:

> game.get()
> game.go("south")
> game.use("a rusty key", "north")

Using line breaks and spaces to format the output isn’t the best approach. It would be
better to use appropriate HTML tags (for headings, paragraphs, and lists) to convey
the structure of the different pieces of information in the output. You’ll look at better
ways of formatting the player and place information using HTML in chapter 19 when
you investigate templates.

 The current version of The Crypt is a bit of a hybrid. Although you make use of
HTML to display some information, you still force players to enter commands on the
console. In chapter 18 you’ll discover how to use simple form elements like buttons,
drop-down lists, and text boxes to let players interact with the game directly on the
web page. To prepare the way for that fully HTML-based version, you finish this chap-
ter by repeating the changes you made to the place and player views but this time for
the message view.

17.5.7 Preparing the message view

In order to make the UI 100% web page based, you need to update the message view
so that it displays messages on the web page rather than on the console. The following
listing shows the new module code.

(function () {
 "use strict";

Listing 17.10 A web-based The Crypt game (CSS)
(http://jsbin.com/toyahi/edit?css)

Listing 17.11 A web-based message view
(http://jsbin.com/nocosej/edit?js,console)

http://jsbin.com/toyahi/edit?console,output
http://jsbin.com/toyahi/edit?console,output
http://jsbin.com/toyahi/edit?css
http://jsbin.com/nocosej/edit?js,console

321Summary

 function getMessageInfo (message) {
 return "*** " + message + " ***";
 }

 function render (message) {
 var messageDiv = document.getElementById("messages");
 messageDiv.innerHTML = getMessageInfo(message);
 }

 function clear () {
 var messageDiv = document.getElementById("messages");
 messageDiv.innerHTML = "";
 }

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

 theCrypt.messageView = {
 render: render,
 clear: clear
 };
})();

The view will need an element with an id of messages. It also adds a clear method for
removing messages from the page.

17.6 Summary
■ Annotate text with HTML to specify the role the text plays in the structure of a

document. For example, the text is a heading, a list item, or a paragraph.
■ Precede an HTML document with its document type:

<!DOCTYPE html>

■ Use html tags to wrap the entire document:

<html> … </html>

■ The head element of a document contains information about the document,
for example, its title and character encoding:

<head>
 <meta charset="utf-8">
 <title>My Web Page</title>
</head>

■ The body element of a document contains the content to be displayed on the
web page:

<body> … </body>

Display the message
on the page

Define a method to
clear any displayed
messages

Include the clear
method in the
interface

322 CHAPTER 17 HTML: building web pages
■ Use tags appropriate to the content. Among many more tags, there are headings
<h1>, <h2>, … , <h6>; paragraphs <p>; list items ; and lists and .

■ Add id attributes to opening tags to uniquely identify elements on the page.

<p id="message"></p>

■ From JavaScript, get a reference to an HTML element by using the document
.getElementById method:

var para = document.getElementById("message");

■ Change the content of an element by setting its innerHTML property:

para.innerHTML = "New text for the paragraph.";

Controls: getting user input
We love buttons! Whether we’re buying books on Amazon, liking a tweet, or send-
ing that late-night drunken email, we find it hard to resist clicking those alluring,
colorful buttons. Well, it’s time for you to issue your own calls to action and start
adding buttons to your pages. And while you’re at it, you need to make space for
text boxes and drop-down lists too.

 In chapter 17 you made the jump to HTML and used JavaScript to add content
to a web page. To get user input, however, you stuck with the console. In these days
of flashy web apps you want the users to interact solely via the web page; they
shouldn’t have to know JavaScript and go searching for the console to use the pro-
grams you write for them.

 This chapter introduces the HTML input, select, and button elements, letting
users type information and commands into a text box, choose from a drop-down

This chapter covers
■ Using buttons to initiate actions
■ Collecting user input with text boxes and

drop-down lists
■ Calling functions automatically when a button

is clicked
323

324 CHAPTER 18 Controls: getting user input
list, and initiate actions by clicking buttons. You see how to set up functions that are
automatically called when a button is clicked.

 It’s fun to click buttons, so let’s start with those. Click!

18.1 Working with buttons
You’re building a My Movie Ratings website (see chapter 17) and have been testing
random greetings when visitors arrive at the site. You want to give visitors the ability to
check out more greetings without reloading the whole page. You decide to add a but-
ton to your test page that updates the display with a random greeting (figure 18.1).

Clicking the Say Hi button displays the greeting. But how? How can you make your
JavaScript program respond to a user clicking the button? You need to do three things:

1 Add a button HTML element to the page
2 Write a function to update the greeting
3 Get the button to call the function when it’s clicked

18.1.1 Adding a button to a page

Well, for starters, you need a button on the page. HTML includes a button element.
Put the button text between the tags (figure 18.2):

<button>Button 1</button>

Figure 18.1 Clicking the Say Hi button displays a random greeting.

325Working with buttons
To work with the button in JavaScript, you give it a unique id attribute in HTML.

<button id="btnGreeting">Say Hi</button>

The following listing shows the key HTML for the My Movie Ratings test page. The
paragraph with id of "greeting" is where you’ll insert the random greeting later.

<button id="btnGreeting">Say Hi</button>

<p id="greeting">Welcome!</p>

The output was shown in figure 18.1. Feel free to take a peek at the CSS panel on JS
Bin if you’re interested in how the styling is applied.

18.1.2 Writing functions to update the greeting

In chapter 17 you wrote two functions, getGreeting and updateGreeting, that chose
a random welcome message and updated the display.

function getGreeting () {
 // Return random greeting
};

function updateGreeting () {
 para.innerHTML = getGreeting();
};

var para = document.getElementById("greeting");
updateGreeting();

The updateGreeting function updates the display by setting the innerHTML property
of the paragraph element, para.

 So you have your button and paragraph in place in the HTML and you have a func-
tion to update the paragraph. Now you want the button to call the updateGreeting
function when a user clicks it.

18.1.3 Listening for clicks

Click—“Wassup!” … Click—“Hola!” … Click—“Ay up me duck!”

Listing 18.1 My Movie Ratings greetings with button (HTML)
(http://jsbin.com/josoqik/edit?html,output)

Figure 18.2 The HTML for three buttons and the output generated

http://jsbin.com/josoqik/edit?html,output

326 CHAPTER 18 Controls: getting user input
 “Dear button, please call my updateGreeting function whenever someone clicks
you,” is the instruction you want to send. To give the button an instruction like that,
you need a reference to the button in JavaScript.

var btn = document.getElementById("btnGreeting");

Once you have a reference to the button, btn, you can tell the button to call a func-
tion whenever the button is clicked:

btn.addEventListener("click", updateGreeting);

The addEventListener method tells the button (or whichever element it’s called
from) to call a specified function whenever a specified event occurs—in this case when-
ever the button is clicked. It’s like the updateGreeting function is waiting, or listening,
for the button to be clicked.

 Listing 18.2 shows the final listing for your random greetings test page. It’s the
same as the listing from chapter 17 but with the two lines of button code added. The
code is wrapped in an immediately invoked function expression to avoid polluting the
global namespace. It also includes a use strict statement to instruct the browser to
use strict mode (see section 17.5.3).

(function () {
 "use strict";

 function getGreeting () {
 var hellos = ["Nanu nanu!", "Wassup!", "Yo!", "Hello movie lover!",
 "Ay up me duck!", "Hola!"];

 var index = Math.floor(Math.random() * hellos.length);

 return hellos[index];
 };

 function updateGreeting () {
 para.innerHTML = getGreeting();
 };

 var btn = document.getElementById("btnGreeting");
 var para = document.getElementById("greeting");

 btn.addEventListener("click", updateGreeting);

 updateGreeting();

})();

Take a look back at chapter 12 for a reminder of how to use Math.floor and Math
.random to generate a random index for an array.

Listing 18.2 My Movie Ratings greetings with button
(http://jsbin.com/josoqik/edit?js,output)

Get a reference
to the button

Tell the button to call
the updateGreeting
function whenever
it’s clicked

http://jsbin.com/josoqik/edit?js,output

327Using a select element to choose an option
18.2 Using a select element to choose an option
The My Movie Ratings website lets users rate movies. They choose a rating from a
drop-down menu and click the Rate button. The page then shows a message with their
rating (figure 18.3).

To implement the rating system, you need to do four things:

1 Add a select HTML element to the page with option elements for each rating
2 Add a button HTML element to the page with “Rate” as its text
3 Write a function to pop up the message with the rating
4 Tell the button to call the function when clicked

A marvelous menagerie of events
Clicks aren’t the only events that functions can listen out for; mouse moves, page
scrolling, keys on the keyboard being pressed, and images loading are some others,
and taps, flicks, force presses, and shakes are some new events appearing for touch-
enabled and mobile devices.

You’ll keep it simple and stick with button clicks for now, but if you’re interested in
the marvelous menagerie of possible events, check out the event reference on the
Mozilla Developer Network at https://developer.mozilla.org/en-US/docs/Web/Events.

Figure 18.3 Clicking the Rate button pops up a message with your rating.

https://developer.mozilla.org/en-US/docs/Web/Events

328 CHAPTER 18 Controls: getting user input
18.2.1 Adding a select element to the page

Web browsers render the select element as a drop-down list. You use option ele-
ments to specify the choices in the list (figure 18.4).

<select id="movies">
 <option>Inside Out</option>
 <option>Tomorrowland</option>
 <option>The Wizard of Oz</option>
</select>

Test it out on JS Bin. Create a new bin with the HTML, Console, and Output panels
open. Replace the contents of the HTML panel with the select code in the previous
snippet. You should see the drop-down list appear on the Output panel. At the con-
sole prompt, enter these commands:

> var dd = document.getElementById("movies")
 undefined
> dd.value
 Inside Out

Choose a different film from the drop-down list on the Output panel. Then use Java-
Script to check its new value:

> dd.value
 The Wizard of Oz

You can update the drop-down’s selected value from JavaScript too:

> dd.value = "Tomorrowland"
 Tomorrowland

Figure 18.4 Two select elements in HTML, displayed on a web page and with a selection in progress

329Using a select element to choose an option
The value set in JavaScript is selected on the Output panel.
 Figure 18.4 shows the HTML for two select elements and how they’re rendered

on a web page.
 The next listing shows the HTML for the body of the My Movie Ratings main page,

with a select element and a button to rate the film shown.

<h1>My Movie Ratings</h1>
<p>Brief info about my favorite movies.</p>

<h2>Movies</h2>

<div id="movieBox">

 <h3 id="movie">Inside Out</h3>
 <p>An emotional adventure inside the head of a young girl.</p>

 <h4>Actors</h4>

 Amy Poehler
 Bill Hader

 <h4>Directors</h4>

 Pete Doctor
 Ronnie del Carmen

 <div class="controls">

 <select id="rating">
 <option>1</option>
 <option>2</option>
 <option selected>3</option>
 <option>4</option>
 <option>5</option>
 </select>

 <button id="rate">Rate</button>

 </div>
</div>

Notice that you can add an attribute of selected to have that option selected when
the drop-down list is shown on the web page.

18.2.2 A function to rate movies and a button to call it

To rate a movie, you need a function that gets the user’s choice from the drop-down
list, gets the value of the selected option in the select element, and pops up a mes-
sage that includes that value, shown in listing 18.4.

Listing 18.3 My Movie Ratings with a drop-down list (HTML)
(http://jsbin.com/hikuzi/edit?html,output)

Add a drop-down list by
using a select element

Add choices to the list
with option elements

Specify which choice
is initially selected

Add a button
element

http://jsbin.com/hikuzi/edit?html,output

330 CHAPTER 18 Controls: getting user input
(function () {
 "use strict";

 var rateButton = document.getElementById("rate");
 var ratingList = document.getElementById("rating");
 var movie = document.getElementById("movie");

 function rateMovie () {

 var rating = ratingList.value;

 var movieTitle = movie.innerHTML;

 alert("You gave " +
 movieTitle + " " + rating + " stars!");

 // Save the rating to the database
 }

 rateButton.addEventListener("click", rateMovie);

})();

The value property of the drop-down list gives you the user’s rating. You call the
alert function, provided by the browser, to display the rating in a pop-up dialog box.
Having wrapped the code in a function, rateMovie, you use addEventListener to tell
the Rate button to call rateMovie whenever it’s clicked.

 Your users can choose a rating from a list. But what if you want to give them more
freedom to express themselves?

18.3 Reading user input with text boxes
Congratulations, the My Movie Ratings site now lets users rate movies! Your success
gets you thinking—what about comments? Why not get users to add a brief comment
with their ratings? Figure 18.5 shows the site with two comments added and a third
in progress.

 Users type their comment into the text box, pick a rating from the drop-down list,
and click the Rate button. Rather than popping up a message, you now add their com-
ment and rating to the comments section for the movie. To add comments to the site,
you need to do five things:

1 Add a text box to the page
2 Add an unordered list to the HTML as a place for comments to go
3 Get a reference to the text box in JavaScript and access its value
4 Get a reference to the comments list in JavaScript
5 Update the rateMovie function to append a comment to the comments list

Listing 18.4 My Movie Ratings with a drop-down list
(http://jsbin.com/hikuzi/edit?js,output)

Collect references
to the elements
you’re using

Get the selected option
from the drop-down

Get the title of the movie

Use the alert function to
pop up a message

Tell the button to call
the rateMovie function
when clicked

http://jsbin.com/hikuzi/edit?js,output

331Reading user input with text boxes
18.3.1 Adding a text box to the page

To add a text box to the page, you use an input HTML element with its type attribute
set to "text". Include an id attribute to reference the element from JavaScript.

<input type="text" id="txtComment" />

The input element displays form controls on a web page. It doesn’t wrap any other
content so is written as a self-closing tag. There’s no opening and closing tag pair.
Notice the forward slash at the end of the tag; it shows you that this tag doesn’t need a
closing tag. The text box goes in the "controls" div along with the ratings drop-
down list and the Rate button.

<div class="controls">

 <input type="text" id="txtComment" />

 <select id="rating"> <!-- options for ratings --> </select>
 <button id="rate">Rate</button>

</div>

The input element with a type attribute set to "text" is displayed as a text box on the
page. Other common type attributes for input elements include password, submit,
checkbox, and radio. Browser makers such as Microsoft, Apple, Google, Mozilla,
and Opera are working to improve support for new types like color pickers, date
pickers, and sliders. To find out more about types of input elements, you can visit the
Mozilla Developer Network at https://developer.mozilla.org/en/docs/Web/HTML/
Element/Input.

Figure 18.5 The movie has a text box to add comments and a section to display them.

https://developer.mozilla.org/en/docs/Web/HTML/Element/Input
https://developer.mozilla.org/en/docs/Web/HTML/Element/Input

332 CHAPTER 18 Controls: getting user input
18.3.2 Adding an unordered list to display the comments

You use a ul element for the list of comments, preceding it by a heading. You give the
list an id attribute so you can add list items using JavaScript.

<h4>Comments</h4>
<ul id="comments">

You add the comments list after the Actors and Directors lists.

18.3.3 Getting references to the new elements

In order to read comments typed into the text box and to add list items to the list of
comments, you need to get a reference to the two elements in your JavaScript code.

var commentsList = document.getElementById("comments"); // The list
var commentBox = document.getElementById("txtComment"); // The text box

The text entered by the user in the text box is accessed via its value property. To see
the value property in action, you can access and update it at the console. Visit the My
Movie Ratings page at http://jsbin.com/nevaxit/edit?console,output, type “Great
Movie!” into the text box, and then type these commands at the console prompt:

> var txt = document.getElementById("txtComment")
 undefined
> txt.value
 Great Movie!
> txt.value = "Rubbish!"
 Rubbish!

The last command will update the contents of the text box on the web page.

18.3.4 Updating the rateMovie function

The next listing shows all of the assembled pieces. The comment from the text box
and the rating from the drop-down list are appended as a list item to the existing list
of comments.

(function () {
 "use strict";

 function getById (id) {
 return document.getElementById(id);
 }

 var rateButton = getById("rate");
 var ratingList = getById("rating");
 var movie = getById("movie");

 var commentsList = getById("comments");
 var commentBox = getById("txtComment");

Listing 18.5 Movies, comments, and a random greeting
(http://jsbin.com/nevaxit/edit?js,output)

Define a function with
a shorter name to get
elements by id

Get references to the
elements used for comments

http://jsbin.com/nevaxit/edit?js,output
http://jsbin.com/nevaxit/edit?console,output

333Reading user input with text boxes
 function rateMovie () {
 var rating = ratingList.value;
 var movieTitle = movie.innerHTML;

 var comments = commentsList.innerHTML;

 var comment = commentBox.value;

 comments += "" + comment + " (" + rating +
 " stars)";

 commentsList.innerHTML = comments;

 commentBox.value = "";
 }

 rateButton.addEventListener("click", rateMovie);

 /* Random greeting code - see listing 18.2 */

})();

In the listing, you need to get references to five HTML elements. Rather than typing
out document.getElementById(id) each time, you create a function that does the
same job but with a shorter name, getById.

 Listing 18.6 shows the updated HTML including the text box, comments list, and a
span element for your random greetings. A span wraps text inline, within a paragraph,
for example, and lets you describe the purpose of the text it wraps, in this case with an
id of "greeting", style it differently (change the color, make it bold, change its size),
and access it via JavaScript (to add a random greeting, for example).

 The contents of the body element are shown here, and some items have been
omitted or compressed because they’re unchanged from listing 18.3. Everything is
on JS Bin.

<h1>My Movie Ratings</h1>

<p>Brief info about my favorite movies.
 Welcome!</p>

<h2>Movies</h2>

<div id="movieBox">
 <h3 id="movie">Inside Out</h3>
 <p>An emotional adventure inside the head of a young girl.</p>

 <h4>Actors</h4> <!-- actors -->
 <h4>Directors</h4> <!-- directors -->

 <h4>Comments</h4>
 <ul id="comments">

Listing 18.6 Movies, comments, and a random greeting (HTML)
(http://jsbin.com/nevaxit/edit?html,output)

Get the current list items
in the comments list

Read the text in
the text box

Append a new comment and
rating using the += operator

Update the comments list

Remove the comment
from the text box

Tell the button to call
rateMovie when it’s clicked

Include a span for
random greetings

Add an unordered list to
display comments and ratings

http://jsbin.com/nevaxit/edit?html,output

334 CHAPTER 18 Controls: getting user input
 <div class="controls">
 <input type="text" id="txtComment" />

 <select id="rating">
 <!-- options for ratings -->
 </select>
 <button id="rate">Rate</button>
 </div>
</div>

Try out the web page at http://output.jsbin.com/nevaxit. Add some comments and
ratings and add them to the list. And check out the random greetings.

18.3.5 Styling the examples with CSS

Many of the examples in part 3 of Get Programming with JavaScript have had colors,
fonts, margins, borders, and so on set with CSS rules on the CSS panel. Although the
book doesn’t teach CSS directly, please have a look at the CSS rules. Taken one at a
time, most of them are easy to follow. Try changing some values or deleting some or
all of the rules. Although they may make the page look nicer, all examples should
work just fine without them.

18.4 The Crypt—player commands via a text box
Players exploring The Crypt have been entering their get, go, and use commands at
the console prompt. You can now move user input to the game’s web page with com-
mands entered via a text box, as shown in figure 18.6.

Add a text box for users
to enter comments

Figure 18.6 Commands are now entered into a text box at the bottom of the page.

http://output.jsbin.com/nevaxit

335The Crypt—player commands via a text box
In order to create a web-based set of user controls, you need to do three things:

1 Add a text box and button to the page.
2 Write a function to convert the text in the text box into game commands.
3 Write a function to be called when the button is clicked.

You could update the code in the controller module to include the two new func-
tions. But the controller module works nicely already, setting up the game and work-
ing with the models and views for players, places, and messages (see chapter 16). A
better plan is to add a separate module that deals with the commands entered into
the text box, calling on the existing controller to execute the get, go, and use meth-
ods as necessary. Figure 18.7 shows the modules used by The Crypt, including the
new Commands module.

Get started by adding a text box and button to the HTML for the page.

18.4.1 Adding controls to the page

You need a way for users to enter the command string and submit it. The following
listing shows the HTML added to your The Crypt web page for the text box and button.
The player, place, and messages div elements are initially empty, which is why they
can’t be seen on the Output panel.

<h1>The Crypt</h1>

<div id="place"></div>
<div id="player"></div>
<div id="messages"></div>

Listing 18.7 Adding controls to The Crypt (HTML)
(http://jsbin.com/rijage/edit?html,output)

playerView

placeView

messageView

Utility

spacer

Map data

Map builder

Map Player

Place

Model Constructors

Views

Add code to convert
text box entries
into commands

Controller

Controller

Commands

Figure 18.7 Modules for The Crypt, including a Commands module to execute commands via a
text box

http://jsbin.com/rijage/edit?html,output

336 CHAPTER 18 Controls: getting user input
<div id="controls">
 <input type="text" id="txtCommand">
 <button id="btnCommand">Make it so</button>
</div>

<!-- Include all of the modules -->

Your controls, the text box and button, are now on the page and they have id attri-
butes set so they can be accessed using JavaScript.

18.4.2 Mapping text box entries to game commands

Table 18.1 shows how the commands entered into the text box will match up with the
methods from the controller module created in chapter 16.

As you can see, the text box commands should make it easier for users to play the
game. So how do you translate the text box input into commands that the controller
understands?

18.4.3 Issuing orders with split, join, pop, and shift

The user will type a command into a text box. You need to convert that command into
an action that the program will take, as shown in table 18.1. To call the correct con-
troller method (get, go, or use) based on the command entered in the text box, you
first represent the command by a JavaScript object. The object will have a type prop-
erty that matches the controller method that you need to call. Table 18.2 shows the
commands and the command objects that they should generate.

Table 18.1 Comparing text box commands with methods from the controller module

Text box command Controller method

get game.get()

go north game.go("north")

use a rusty key north game.use("a rusty key", "north")

Table 18.2 Command objects

Text box command Command object

get {
 type: "get"
}

go north {
 type: "go",
 direction: "north"
}

Add a text box with an
id of txtCommand

Add a button with an
id of btnCommand

337The Crypt—player commands via a text box
The first word of each text box command gives you the type of the command object.
To get at the separate words of the command, you convert the string into an array of
words using split.

var commandWords = commandString.split(" ");

For example, "get a rusty key" becomes ["get", "a", "rusty", "key"]. The shift
array method removes and returns the first element in an array. That’s perfect for
grabbing the command type for your command object.

var commandWords = commandString.split(" ");
var command = {
 type: commandWords.shift();
};

The command word is no longer in the array. ["get", "a", "rusty", "key"] becomes
["a", "rusty", "key"].

 For go and use, you grab the direction, the last element in the commandWords
array, by using the pop array method.

command.direction = commandString.pop();

If there are any elements left in the commandWords array, you join them back together
to form the name of an item.

command.item = commandWords.join(" ");

For example, ["a", "rusty", "key"] is joined to become "a rusty key".
 The next listing shows a function that converts a command string into a command

object using the ideas just discussed.

function parseCommand (commandString) {

 var commandWords = commandString.split(" ");

use a rusty key north {
 type: "use",
 item: "a rusty key",
 direction: "north"
}

Listing 18.8 Converting a command string into a command object
(http://jsbin.com/repebe/edit?js,console)

Table 18.2 Command objects

Text box command Command object

Split the command string into
an array of separate words

http://jsbin.com/repebe/edit?js,console

338 CHAPTER 18 Controls: getting user input

C
the
go O
 var command = {
 type: commandWords.shift();
 };

 if (command.type === "go" || command.type === "use") {
 command.direction = commandWords.pop();
 }

 command.item = commandWords.join(" ");

 return command;
};

With the command object in hand you can now call the matching method of the
game controller. To organize the different possible command types, use a control
structure tailor made for deciding between many options: the switch block.

18.4.4 Deciding between options with switch

You want to take different actions depending on which command was issued. You
could use a series of if-else blocks. But a switch block is an alternative that some
programmers feel is neater. switch lets you define a series of code blocks and execute
certain blocks depending on the value of a variable or property. Here’s an example
comparing the two approaches, using command.type as the switch variable:

switch (command.type) { |
 |
 case "get": | if (command.type === "get") {
 game.get(); | game.get();
 break; | }
 |
 case "go": | else if (command.type === "go") {
 game.go(command.direction); | game.go(command.direction);
 break; | }
 |
 case "use": | else if (command.type === "use") {
 game.use(command.item, | game.use(command.item,
 command.direction); | command.direction);
 break; | }
 |
 default: | else {
 game.renderMessage(| game.renderMessage(
 "I can’t do that"); | "I can’t do that");
} | }

If the value of command.type is "get", then the code in the first case block is exe-
cuted. If the value of command.type is "go", then the code in the second case is
executed. Without the break statement, the switch block would continue to execute
all of the case blocks after the first one matched. You can include a default case with
code to be executed if no other conditions are matched.

Create an object
and assign it to the
command variable

Remove the first word
in the array and assign
it to the type property

heck if
type is
R use

Remove the last word in the
array and assign it to the
direction property

Join any remaining
words to form the

name of an item

339The Crypt—player commands via a text box
 There’s not much difference between the two approaches; it’s a bit easier to read
the condition in the switch block, but you have the extra break statements. Once
again, it comes down to personal preference: if you think the switch block is neater,
use it; just don’t forget the break statements.

 Listing 18.9 shows the switch block for The Crypt in context, as part of a doAction
function.

18.4.5 Making it so—listening for button clicks

The final piece of the UI puzzle is to link the JavaScript to the HTML. You need the
button to call the doAction function from listing 18.9 whenever it’s clicked:

var commandButton = document.getElementById("btnCommand");

commandButton.addEventListener("click", doAction);

The doAction function retrieves the text from the text box:

var txtCommand = document.getElementById("txtCommand");
var commandString = txtCommand.value;

The doAction function then parses the command string to create a command object.
It uses a switch block to call the matching controller method. Listing 18.9 shows how
the pieces fit together for the command module. It uses the parseCommand function
from listing 18.8, which can be seen on JS Bin. Note that the JS Bin listing is for refer-
ence; the module won’t run in isolation on JS Bin but will throw an error.

(function () {
 "use strict";

 function parseCommand (commandString) { /* listing 18.8 */ }

 function doAction = () {

 var txtCommand = document.getElementById("txtCommand");
 var commandString = txtCommand.value;

 var command = parseCommand(commandString);

 theCrypt.messageView.clear();

 switch (command.type) {
 case "get":
 game.get();
 break;

 case "go":
 game.go(command.direction);
 break;

Listing 18.9 The command module
(http://jsbin.com/qedubi/edit?js,console)

Assign the text from
the text box to the
commandString
variable

Parse the text and assign the
command object created to
the command variable

Clear old messages
from the message view

http://jsbin.com/qedubi/edit?js,console

340 CHAPTER 18 Controls: getting user input
 case "use":
 game.use(command.item, command.direction);
 break;

 default:
 theCrypt.messageView.render("I don't know how to do that");
 }

 txtCommand.value = "";
 txtCommand.focus();
 }

 var commandButton =
 document.getElementById("btnCommand");

 commandButton.addEventListener("click", doAction);
})();

You like to smooth the path for the players, so, after the switch block, you clear the
user’s command from the text box by setting its value property to an empty string.
And because you really care, you put the cursor in the text box, ready for their next
command, by calling the text box’s focus method. Just before the switch block, you
also use the message view’s clear method, added at the end of chapter 17, to clean up
any old messages.

 The code for the command module is wrapped inside an immediately invoked
function expression. As soon as the script is loaded by the web page, it will be exe-
cuted and the event listener will be added to the button element.

18.4.6 Enter The Crypt

Rather than changing the existing, working code of the Controller module, you cre-
ated a new module, the Commands module, that parses a player’s commands and
calls the controller’s public methods, get, go, and use. That’s neat! The controller is
independent of the player interface; it’s the same one that worked in the console-
based game and it will work with new interfaces—could you add a button to get items
in a room?

 Figure 18.8 shows a game of The Crypt in progress with a message being displayed
to a player via the message view.

 Listing 18.7 included the HTML for the latest version of the game but you need
to change the message view script element and add one for the new Commands
module:

<!-- message view -->
<script src="http://output.jsbin.com/nocosej.js"></script>

<!-- Web Page Controls -->
<script src="http://output.jsbin.com/qedubi.js"></script>

Clear the text box and give it the
focus, ready for the next command

Get a reference to the
button on the page

Tell the button to call
the doAction function
whenever it’s clicked

341Summary
Play the game at http://output.jsbin.com/depijo, and see the HTML and JavaScript at
http://jsbin.com/depijo/edit?html,javascript. Be careful not to step in the zombie!

18.5 Summary
■ To use controls like buttons, drop-down lists, and text boxes, you need an

HTML element for the control, an id attribute on the element, and a reference
to the element in JavaScript. You can then access the value properties of text
boxes or drop-down lists and specify a function to call when a button is clicked.

■ Use a button element to display a button on the page. Include the text to be
shown on the button between the opening and closing tags:

<button>Click Me!</button>

■ Include an id attribute in the opening tag so that the button can be accessed
from JavaScript code:

<button id="messageButton">Click Me!</button>

■ Use the button’s id to get a reference to the button in JavaScript:

var btn = document.getElementById("messageButton");

■ Define a function that can be called when the button is clicked:

var showMessage = function () {
 var messageDiv = document.getElementById("message");
 messageDiv.innerHTML = "You clicked the button!";
};

Figure 18.8 The Crypt in progress showing a message to the player

http://output.jsbin.com/depijo
http://jsbin.com/depijo/edit?html,javascript

342 CHAPTER 18 Controls: getting user input
■ Add an event listener to the button to call a function when the button is clicked:

btn.addEventListener("click", showMessage);

■ Use an input element with its type attribute set to text to display a text box on
the page. input elements don’t have closing tags:

<input type="text" id="userMessage" />

■ Get or set the text in a text box by using its value property:

var txtBox = document.getElementById("userMessage");
var message = txtBox.value;

■ Use a select element with option elements to display a drop-down list:

<select>
 <option>Choice 1</option>
 <option>Choice 2</option>
 <option>Choice 3</option>
</select>

■ Execute code depending on the value of a variable or property by using a
switch block:

switch (command.type) {
 case "go":
 // Execute code when command.type === "go"
 break;

 case "get":
 // Execute code when command.type === "get"
 break;

 default:
 // Execute code if no other cases match
}

Templates: filling
placeholders with data
You want your websites to be easy to navigate and a pleasure to use. Their designs
should consider what content to include on each page, its accessibility and usability,
the look and feel, and the overall user experience. Members of your team, building
and maintaining a site, will have different strengths; even as a team of one, it makes
sense to focus on different aspects of a site at different times.

Get Programming with JavaScript has favored a modular approach to developing
applications, and you’ve seen that although there may be more pieces to manage,
the management of each piece is simpler, more flexible, and more focused. But
in moving from pure JavaScript in part 2 to JavaScript and HTML in part 3, there
has been an unwelcome crossing of the streams. You now have views that mix data

This chapter covers
■ Replacing one string with another
■ Repeating code with while loops
■ Using templates to separate HTML from

JavaScript
■ Embedding templates in web pages
■ Transforming one array into another with map
343

344 CHAPTER 19 Templates: filling placeholders with data
and JavaScript with HTML to produce their output (see chapter 17—or better yet,
read on):

var html = "<h3>" + movie.title + "</h3>";
html += "<p>" + movie.summary + "</p>";

This chapter shows you how to untangle the HTML from the data and the JavaScript
by using templates. The designers on your team can focus on their HTML and avoid
the tricky JavaScript syntax. And, as ever with a modular approach, isolating the pieces
improves flexibility, swapability, and maintainability. Don’t cross the streams!

19.1 Building a news page—breaking news
In chapters 14, 15, and 16 you worked on a fitness app that let users log their sessions
of exercise; you’re part of a team of developers working on the app for different
devices and platforms. Well, the fitness app is gaining a lot of attention; early reports
from testers are positive and there’s quite a buzz on social media. You decide to create
a news page for the team, to keep developers, testers, and other interested parties up
to date with the work you’re doing.

 Figure 19.1 shows the news page with two news items. All team members contrib-
ute to the news page, adding their items to a central content management system
(CMS). Someone else manages the CMS and provides you with the news items as
JavaScript data. Your job is to turn the data into HTML for the news page.

Figure 19.1 Fitness App News with two news items

345Building a news page—breaking news
19.1.1 Comparing the news item data and HTML

The team members are keen and update the news on the content management system
regularly. The CMS provides you with data in this form:

var posts = [
 {
 title: "Fitness App v1.0 Live!",
 body: "Yes, version 1 is here...",
 posted: "October 3rd, 2016",
 author: "Oskar",
 social: "@appOskar51"
 },
 {
 title: "Improved Formatting",
 body: "The app's looking better than ever...",
 posted: "October 8th, 2016",
 author: "Kallie",
 social: "@kal5tar"
 }
];

A designer on the team writes the HTML for a single news item:

<div class="newsItem">
 <h3>Fitness App v1.0 Live! - by Oskar</h3>
 <p>Yes, version 1 is here...</p>
 <p class="posted">Posted: October 3rd, 2016</p>
 <p class="follow">Follow Oskar @appOskar51</p>
</div>

Each item is wrapped in a div element and is made up of a heading and three para-
graphs. The heading includes a span element for the author of the post. (You use the
span to style the author differently from the rest of the heading with CSS.) How do
you construct the finished HTML news item from the data?

19.1.2 Constructing the HTML by string concatenation

Up to this point, you’ve been constructing strings for display piece by piece by using
string concatenation. For a news item you do something like this:

var item = '<div class="newsItem"><h3>' + post.title;
item += ' - ' + post.author + '</h3>';
item += '<p>' + post.body + '</p>';
item += '<p class="posted">Posted: ' + post.posted + '</p>';
item += '<p class="follow">Follow ' + post.author + ' ';
item += post.social + '</p></div>';

A big drawback to this approach is the way it mixes up JavaScript and data with
HTML. There are some fantastic designers on your team who know HTML inside out
but who are not so confident with JavaScript. They’ll happily piece together the struc-
ture of a news item with HTML, but all the var and += and dot notation are a mystery.

346 CHAPTER 19 Templates: filling placeholders with data
And even if they were okay with JavaScript, updating the code isn’t exactly a walk in
the park; I’m looking at you, quotation marks! There is a better way: let the HTML
experts stick to what they know best.

19.1.3 Designing with HTML templates

You want the designers to come up with some elegant, well-structured HTML for a
generic news item, and you’ll then fill it with the latest data. You want them to provide
you with a template for a news item.

<div class="newsItem">
 <h3>{{title}} - {{author}}</h3>
 <p>{{body}}</p>
 <p class="posted">Posted: {{posted}}</p>
 <p class="follow">Follow {{author}} {{social}}</p>
</div>

That’s much neater than all that string concatenation, right? There’s no potential
confusion with single and double quotation marks, and the different fields of the data
(title, body, author, posted, social) are clearly identified as placeholders with double
curly braces.

 But if the template is included with the HTML, won’t it appear on the web page?
Not if you wrap it in script tags.

19.1.4 Using script tags for templates

The HTML templates are kept with the rest of the HTML for a web page, placed
within script tags. Use a nonstandard type attribute for the script element, and
then when the browser is loading the page it won’t recognize the type and will ignore
the template. The content of the script element won’t appear as part of the output—
the visible web page—and won’t be run as JavaScript either.

<script type="text/template" id="newsItemTemplate">
 <div class="newsItem">
 <h3>{{title}} - {{author}}</h3>
 <p>{{body}}</p>
 <p class="posted">Posted: {{posted}}</p>
 <p class="follow">Follow {{author}} {{social}}</p>
 </div>
</script>

If the script element has a type of "text/javascript" or if the type is missing, the
browser will try to execute its contents as JavaScript code. But with a type of "text/
template", the browser simply passes over the contents.

 Although the browser will ignore the template when rendering the page, you can
still access it from JavaScript via its id attribute.

var templateScript = document.getElementById("newsItemTemplate");
var templateString = templateScript.innerHTML;

347Replacing one string with another
The first listing shows the contents of the body element for your news page. There’s a
heading, a div for the news items, and your template wrapped in a script tag.

<h1>Fitness App News</h1>

<div id="news"></news>

<script type="text/template" id="newsItemTemplate">
 <div class="newsItem">
 <h3>{{title}} - by {{author}}</h3>
 <p>{{body}}</p>
 <p class="posted">Posted: {{posted}}</p>
 <p class="follow">Follow {{author}} {{social}}</p>
 </div>
</script>

You only need to find a way to replace the placeholders with the actual data, and you’ll
have news items ready for publication. You need to learn how to replace one string, a
placeholder, with another, some data.

19.2 Replacing one string with another
To switch one string for another, you use the replace string method, passing the
string to find as the first argument and the string with which to replace it as the sec-
ond. The method returns a new string. The following listing shows how to replace the
string "{{title}}" with the string "Fitness App v1.0 Live!". It produces the follow-
ing output on the console:

> <h3>{{title}}</h3>
> <h3>Fitness App v1.0 Live!</h3>

var before = "<h3>{{title}}</h3>";

var after = before.replace(
 "{{title}}", "Fitness App v1.0 Live!");

console.log(before);
console.log(after);

The replace method searches the string to which it is attached, returning a new string.

before.replace(string1, string2);

This snippet searches the string stored in the variable before.

Listing 19.1 Fitness App News (HTML)
(http://jsbin.com/viyuyo/edit?html,output)

Listing 19.2 Replacing one string with another
(http://jsbin.com/jeyohu/edit?js,console)

Include a div in which to
place the news items

Use a script
element to wrap
the news item
template

Look for the first
string and replace
it with the second

The original string
is not changed

http://jsbin.com/jeyohu/edit?js,console
http://jsbin.com/viyuyo/edit?html,output

348 CHAPTER 19 Templates: filling placeholders with data
19.2.1 Chaining calls to replace

The replace method acts on strings. It also returns a string. This means replace can
be called on its own return value, allowing you to chain calls like this:

template
 .replace("{{title}}", "Fitness App v1.0 Live!")
 .replace("{{author}}", "Oskar");

If template is the string "<h3>{{title}} - by {{author}}</h3>",
then the previous snippet works through the following steps. First, the {{title}}
placeholder is replaced:

"<h3>{{title}} - by {{author}}</h3>"
 .replace("{{title}}", "Fitness App v1.0 Live!")
 .replace("{{author}}", "Oskar");

Then the {{author}} placeholder is replaced:

"<h3>Fitness App v1.0 Live! - by {{author}}</h3>"
 .replace("{{author}}", "Oskar");

The final result is

"<h3>Fitness App v1.0 Live! - by Oskar</h3>";

Listing 19.3 shows an example of chaining two calls to replace. It produces the follow-
ing output on the console:

> Follow {{author}} {{social}}
> Follow Oskar @appOskar51

var data = { author : "Oskar", social : "@appOskar51" };
var before = "Follow {{author}} {{social}}";

var after = before
 .replace("{{author}}", data.author)
 .replace("{{social}}", data.social);

console.log(before);
console.log(after);

The calls to replace were written across multiple lines in listing 19.3. This has no impact
on the program but makes it easier for someone reading the code to pick out the sepa-
rate calls. When methods can be chained with dot notation, like replace, they are said

Listing 19.3 Chaining calls to replace
(http://jsbin.com/rebugu/edit?js,console)

Call replace on the
original string

Call replace on the
value returned by
the first call

http://jsbin.com/rebugu/edit?js,console

349While loops—replacing a string multiple times
to have a fluent interface. Programmers often design whole suites of objects and methods
to use fluent interfaces so they become easier to use, read, and understand.

19.3 While loops—replacing a string multiple times
Knowing how to use replace to swap one string for another, you write code to test it
out for the news page. Figure 19.2 shows what a news item template looks like before
you replace its placeholders.

The data for a news item is a JavaScript object with five properties: title, body, author,
posted, and social:

var data = {
 title: "Fitness App v1.0 Live!",
 body: "Yes, version 1 is here...",
 posted: "October 3rd, 2016",
 author: "Oskar",
 social: "@appOskar51"
};

You call replace for each of the properties and, at first, you think things have gone
well. Figure 19.3 shows the rendered news item.

Figure 19.2 A news item with all of its placeholders showing

Figure 19.3 A news item—one of the {{author}} placeholders has not been replaced
(bottom right).

350 CHAPTER 19 Templates: filling placeholders with data

E
the

f
tem
Close, but no Pulitzer! One of the placeholders hasn’t been replaced. There’s still a
stubborn {{author}} in the bottom right of the news item. The following listing
shows the code you used. What went wrong?

 var data = {
 title: "Fitness App v1.0 Live!",
 body: "Yes, version 1 is here...",
 posted: "October 3rd, 2016",
 author: "Oskar",
 social: "@appOskar51"
 };

 var templateScript =
 document.getElementById("newsItemTemplate");

 var templateString = templateScript.innerHTML;

 var newsItemHTML = templateString
 .replace("{{title}}", data.title)
 .replace("{{author}}", data.author)
 .replace("{{posted}}", data.posted)
 .replace("{{body}}", data.body)
 .replace("{{social}}", data.social);

 var newsContainer = document.getElementById("news");

 newsContainer.innerHTML = newsItemHTML;

The problem is, the replace method replaces only the first occurrence of the string
it’s trying to match. The news item template has two {{author}} placeholders and
you replace only one of them. Have a go at fixing the problem yourself, by calling
replace twice for the same placeholder.

 The template and replace code are all a bit too tightly coupled. If the designer
changes the template to include the {{author}} placeholder a third time (maybe for
an email link or a short bio), you’ll have to dig back into the JavaScript and update the
code to add another call to replace.

 You want code that automatically keeps calling replace while there are placehold-
ers to fill. How can you call replace the correct number of times?

19.3.1 Repeating code while a condition is met

All of the placeholders in your news item template need to be replaced with the corre-
sponding data. For example, both instances of {{author}} should be filled with
Oskar, as shown in the top right and bottom right of figure 19.4.

Listing 19.4 Calling replace once for each property
(http://jsbin.com/quroha/edit?js,html,output)

Get a reference to the script
element that holds the template

xtract
 HTML
or the
plate Replace each

placeholder with
its property value

Get a reference to
the div that will hold
the news item

Inject the news item
HTML into the div

http://jsbin.com/quroha/edit?js,html,output

351While loops—replacing a string multiple times
Your code should keep calling replace while it finds a placeholder for each property.
In pseudocode (pretend code) it should look something like this:

while there is a placeholder {
 replace the placeholder with data
}

The code block between the curly braces should keep being repeated while there’s a
placeholder. Once no placeholder is found, the code block can be skipped. Here’s
how to accomplish that goal in JavaScript:

while (filled.indexOf(placeholder) !== -1) {
 filled = filled.replace(placeholder, data.property);
}

You’ll dig into the details shortly, so don’t worry too much if you don’t follow every-
thing yet. But you should be able to appreciate the gist of what the code is doing. Let’s
look at how the while loop works in general.

19.3.2 The while loop

The while loop keeps calling replace while a placeholder is found in the filled
string. When no placeholder is found, execution continues after the code block. In
general, the while loop lets you repeatedly execute a block of code while a condition
is true. The structure of a while loop looks like this:

while (condition) {
 // Code to execute if condition is true.
}

The loop first evaluates the condition. If it evaluates to true, then the code block is
executed, just like an if statement. Unlike an if statement, once the code block has
been executed, the while loop evaluates the condition again. If the condition still
evaluates to true, then the block is executed again. The loop keeps executing the
code block while the condition is true. If the condition is false, then the code block
is skipped and the program continues with the statements after the block.

Figure 19.4 Both author placeholders have been replaced with Oskar (top right and
bottom right).

352 CHAPTER 19 Templates: filling placeholders with data
 The next listing shows a while loop being used to display whole numbers from
1 to 10.

var count = 1;

while (count < 11) {
 console.log(count);
 count++;
}

Once the count variable reaches 11, the condition will evaluate to false and the value
of count won’t be logged to the console. The code block should always change the
value of a variable used in the condition. Otherwise, if the condition’s value starts as
true, it will never become false and the loop will become an infinite loop. In listing 19.5,
you use the increment operator, ++, to add 1 to the value of count. Three different
ways of adding 1 to the value of a count variable are shown here:

count = count + 1;
count += 1;
count++;

19.3.3 Replacing a string while it can be found

You can use a while loop to replace multiple occurrences of a placeholder. First,
check if the placeholder you want to replace is present with the indexOf method.
indexOf returns -1 if a string can’t be found. If the placeholder is found, then indexOf
won’t return -1. Use that fact in the condition of a while loop:

while (filled.indexOf(placeholder) !== -1) {
 // Make changes to filled
}

Listing 19.6 uses a while loop to keep replacing a string until it’s no longer found. It
produces the following output on the console:

> Starting replacement...
> {{title}} by Oskar. Follow {{author}} {{social}}
> {{title}} by Oskar. Follow Oskar {{social}}
> ...replacement finished.

var template = "{{title}} by {{author}}. Follow {{author}} {{social}}";

var filled = template;

console.log("Starting replacement...");

Listing 19.5 Using a while loop to count
(http://jsbin.com/quroga/edit?js,console)

Listing 19.6 Using a while loop with replace
(http://jsbin.com/cabaju/edit?js,console)

Use the increment
operator, ++, to add 1
to the value of count

Use a second variable so
that the initial template
is unchanged

http://jsbin.com/quroga/edit?js,console
http://jsbin.com/cabaju/edit?js,console

353Automating placeholder replacement for templates
while (filled.indexOf("{{author}}") !== -1) {

 filled = filled.replace("{{author}}", "Oskar");
 console.log(filled);

}

console.log("...replacement finished.");

The code first logs that it’s starting the replacement process. The while loop then exe-
cutes its code block twice, replacing one instance of {{author}} and then the other.
With no more instances of {{author}} to find, filled.indexOf("{{author}}")
returns -1 and the while loop ends. Execution continues after the loop, and the code
concludes by logging that the replacement process has finished.

19.3.4 Replacing strings with regular expressions

There’s an alternative way of replacing strings. It uses regular expressions, a powerful but
often complicated way of specifying patterns of characters you want to match and
replace. Regular expressions are a little beyond the scope of the book, but you can
investigate a number of examples on the Get Programming with JavaScript website at
www.room51.co.uk/js/regexp.html.

19.4 Automating placeholder replacement for templates
The fitness app uses data for user exercise sessions, and its news page uses data for
news items. The quiz app uses data for sets of questions and answers, and The Crypt
uses data for its maps. It would be great to use HTML templates to display all kinds of
data you might find in your projects. But you don’t want to have to reinvent the while
every time you need to fill placeholders with data. So, what’s the key to automating
template use?

19.4.1 Matching template placeholders with object properties

Figure 19.5 shows a news item from the fitness app news page again. The placeholders
have yet to be filled with data.

Check if the placeholder
can be found

Replace the
placeholder
with a value

Figure 19.5 A news item with placeholders unfilled

http://www.room51.co.uk/js/regexp.html

354 CHAPTER 19 Templates: filling placeholders with data
The data that will fill the placeholders looks like this:

var data = {
 title: "Fitness App v1.0 Live!",
 body: "Yes, version 1 is here...",
 posted: "October 3rd, 2016",
 author: "Oskar",
 social: "@appOskar51"
};

The property names of the news item data object, its keys, match the names of the
placeholders in the template. For each key, you want to keep replacing its matching
placeholders while they can be found.

1 Start with title and keep replacing {{title}} with Fitness App v1.0 Live!
until there are no more {{title}} placeholders to replace.

2 Move on to body and keep replacing {{body}} with Yes, version 1 is here...
until there are no more {{body}} placeholders to replace.

3 Repeat the process for each key until all of the keys have had all of their place-
holders replaced.

You can get an array of all of the news item’s property names by using the Object
.keys method.

var keys = Object.keys(data);

For the news item, keys = ["title", "body", "posted", "author", "social"].
 Armed with the keys, you can easily create the placeholders and replace them with

values in the template. Remember, you can use square bracket notation to retrieve the
value for a key:

data["title"]; // "Fitness App v1.0 Live!"
data["author"]; // "Oskar"

And if you have a property’s key, you can also build the placeholder you need to
match in the template:

var placeholder = "{{" + key + "}}";

The key for a property is well named; you use it to unlock the value of the property and
its placeholder (table 19.1).

Table 19.1 A property’s keys are used to access its value and build its placeholder

Key Value Placeholder

title data["title"] {{title}}

body data["body"] {{body}}

posted data["posted"] {{posted}}

355Automating placeholder replacement for templates
19.4.2 Filling all of the placeholders for each key

It’s time to bring all of the parts together and write some code that will not only fill
templates with data for the fitness app news page but will also work with any data and
matching templates. Listing 19.7 shows a fill function that uses the ideas from the
previous section, iterating over the keys of a data object and replacing the placehold-
ers with values.

function fill (template, data) {

 Object.keys(data).forEach(function (key) {

 var placeholder = "{{" + key + "}}";
 var value = data[key];

 while (template.indexOf(placeholder) !== -1) {
 template = template.replace(placeholder, value);
 }

 });

 return template;
}

// Test the fill function

var data = {
 title: "Fitness App v1.0 Live!",
 body: "Yes, version 1 is here...",
 posted: "October 3rd, 2016",
 author: "Oskar",
 social: "@appOskar51"
};

var templateScript =
 document.getElementById("newsItemTemplate");
var templateString = templateScript.innerHTML;
var newsContainer = document.getElementById("news");

newsContainer.innerHTML = fill(templateString, data);

Listing 19.7 also includes code to test the fill function. On the last line, it sets the
contents of a div element with the HTML returned by the function.

19.4.3 Building a list of items using a template

You’re already smiling. Yes, the fitness app news page features a list of news items. And
yes, your template fill function works with only a single news item. But you know

Listing 19.7 A function to fill templates with data
(http://jsbin.com/bazika/edit?js,output)

Iterate over each
key in the data

Use the key to build a placeholder
and retrieve the data value

Keep replacing the
placeholder with
the value until the
placeholder can’t
be found

Return the filled
template

Collect the template
and news container
reference from the
web page

Fill the template with the data
and update the news display

http://jsbin.com/bazika/edit?js,output

356 CHAPTER 19 Templates: filling placeholders with data
the power of forEach for working with lists. Writing a fillList function is a snap, as
shown here.

function fill (template, data) { /* Listing 19.7 */ }

function fillList (template, dataArray) {
 var listString = "";

 dataArray.forEach(function (data) {
 listString += fill(template, data);
 });

 return listString;
}

// Test the function
var posts = [
 {
 title: "Fitness App v1.0 Live!",
 body: "Yes, version 1 is here...",
 posted: "October 3rd, 2016",
 author: "Oskar",
 social: "@appOskar51"
 },
 {
 title: "Improved Formatting",
 body: "The app's looking better than ever...",
 posted: "October 8th, 2016",
 author: "Kallie",
 social: "@kal5tar"
 }
 /* Two more items on JS Bin */
];

var templateScript = document.getElementById("newsItemTemplate");
var templateString = templateScript.innerHTML;
var newsContainer = document.getElementById("news");

newsContainer.innerHTML =
 fillList(templateString, posts);

In the fillList function in listing 19.8, you use the forEach method to iterate over
the array of data objects, dataArray, passing each one to the fill function and
appending the filled templates it returns to listString.

 Now that you have the two template functions you need, you’re keen to get the
scoop on the finished fitness app news page.

Listing 19.8 Building a list using a template
(http://jsbin.com/hilecu/edit?js,output)

Call the fill function for
every item, building up
the list string

Fill the template for every news
item and update the display with
the completed HTML string

http://jsbin.com/hilecu/edit?js,output

357Building a news page—news just in
19.5 Building a news page—news just in
It’s time to get modular. You know how the fitness app team rolls; they love to share
code but they hate pollution. They want to see a finished news page with separate data
and template modules. Figure 19.6 shows the setup.

The news page on JS Bin includes the news item template inside a script element and
code in the JavaScript panel that uses the modules and template to display the news
items. The finished web page with two news items displayed was shown in figure 19.1.

 To finish your work on the news page, first create the modules and then import
them into the web page. Read all about it in the next two sections.

19.5.1 Creating the templates and data modules

Put the template functions into one module and the news data into another. Use
namespaces to avoid creating too many local variables.

TEMPLATING FUNCTIONS

The next listing shows how the two templating functions from listings 19.7 and 19.8
are packaged into a templates module.

(function () {
 "use strict";

 function fill (template, data) { /* see listing 19.7 */ }

 function fillList (template, dataArray) { /* see Listing 19.8 */ }

 if (window.gpwj === undefined) {
 window.gpwj = {};
 }

 gpwj.templates = {
 fill: fill,
 fillList: fillList
 };

})();

Listing 19.9 The templates module
(http://jsbin.com/pugase/edit?js,console)

Modules

Template Functions

News Items
Page HTML

News Item Template

Page JavaScript

News Page

Figure 19.6 The page includes the
news item template and JavaScript
code and imports two modules.

Ensure gpwj exists in
the global namespace

Add the two
template functions
to gpwj.templates

http://jsbin.com/pugase/edit?js,console

358 CHAPTER 19 Templates: filling placeholders with data
You use a new namespace, gpwj (from Get Programming with JavaScript); the templates
module will be useful in so many projects that it’s worth having it as part of a general
utilities namespace rather than in with the fitness app or The Crypt or wherever else it
will be used. To call the functions, include the namespace:

var newsItemHTML = gpwj.templates.fill(newsItemTemplate, data);

NEWS DATA

For the real-world news page, the data will come from a central content manage-
ment system. You mimic the CMS news feed by creating a module that supplies
dummy data. You can swap the module for one with a live CMS connection further
down the line.

 The next listing includes the data and a function for getting it assigned to the
fitnessApp.news namespace.

(function () {
 "use strict";

 var posts = [
 {
 title: "Fitness App v1.0 Live!",
 body: "Yes, version 1 is here...",
 posted: "October 3rd, 2016",
 author: "Oskar",
 social: "@appOskar51"
 }
 /* more data on JS Bin */
];

 function getNews (numItems) {
 return posts.slice(0, numItems);
 }

 if (window.fitnessApp === undefined) {
 window.fitnessApp = {};
 }

 fitnessApp.news = {
 getItems: getNews
 };

})();

To get news items, call getItems, specifying the number of items you want. For exam-
ple, to get three news items you’d use the following code:

var itemsData = fitnessApp.news.getItems(3);

Listing 19.10 A news page data module
(http://jsbin.com/fupiki/edit?js,console)

Include an array of news
items rather than getting
data from the CMS

Return the specified
number of news items

Ensure the fitnessApp
global namespace exists

Add a news namespace
to the fitnessApp
namespace

http://jsbin.com/fupiki/edit?js,console

359Building a news page—news just in
The real news data module that retrieves items from the CMS will use the same inter-
face as listing 19.10. In other words, its news will also be accessed by calling its get-
Items method. By using the same interface, you can easily swap modules from your
static version to the dynamic CMS version.

19.5.2 Importing the modules

To provide your readers with the latest headlines on developments from the fitness
app team, you create the simple news page HTML shown here.

<h1>Fitness App News</h1>

<div id="news"></news>

<script type="text/template" id="newsItemTemplate">
 <div class="newsItem">
 <h3>{{title}} - by {{author}}</h3>
 <p>{{body}}</p>
 <p class="posted">Posted: {{posted}}</p>
 <p class="follow">Follow {{author}} {{social}}</p>
 </div>
</script>

<!-- templates module -->
<script src="http://output.jsbin.com/pugase.js"></script>

<!-- news items data -->
<script src="http://output.jsbin.com/fupiki.js"></script>

To bring all of the pieces together, you add JavaScript that retrieves the template from
the page, fills it with the news item data, and updates the news div with the generated
HTML, as in the next listing.

var templateScript =
 document.getElementById("newsItemTemplate");
var templateString = templateScript.innerHTML;
var newsContainer = document.getElementById("news");

var newsData = fitnessApp.news.getItems(3);

newsContainer.innerHTML =
 gpwj.templates.fillList(templateString, newsData);

Listing 19.11 A modular news page (HTML)
(http://jsbin.com/vemufa/edit?html,output)

Listing 19.12 A modular news page
(http://jsbin.com/vemufa/edit?js,output)

Include a div for
the news items

Put HTML
templates in
the page inside
script tags

Import the
templating and
data modules

Grab the pieces
you need from
the page

Use the news data
module to retrieve
three news items

Use the template module to generate the
news items HTML and update the page

http://jsbin.com/vemufa/edit?html,output
http://jsbin.com/vemufa/edit?js,output

360 CHAPTER 19 Templates: filling placeholders with data
Using templates is a common way to generate HTML from an application’s data.
There are many JavaScript templating libraries freely available for general use; Han-
dlebars, Moustache, and Pug are three popular examples.

 Stop the press! Your team members love the neat, modular, reusable approach
you’ve taken and vow to add new news items every day. Some of them have already
started incorporating the gpwj.templates functions into their own applications. You
decide to do the same, as you return to The Crypt.

19.6 The Crypt—improving the views
In chapter 17 you created some web-based views for players and places. The informa-
tion they displayed, originally intended for the console, was formatted with spaces,
line breaks, and boxes and borders from the spacer namespace, rather than HTML.
Now that you’ve seen how templates can be used to separate markup and JavaScript,
it’s time to improve the views so that appropriate HTML tags are used to wrap data in
The Crypt.

 Figure 19.7 shows what The Crypt will look like after the changes. Switching to
HTML from plain text makes it possible to style the output with CSS, leading to much
greater potential for visually interesting designs. Figure 19.8 shows the modules for
the project with new and updated modules highlighted.

Figure 19.7 The latest version of The Crypt uses HTML templates to build page elements.

361The Crypt—improving the views
You created the Templates module earlier in the chapter. Now you create templates
and update the views to use them.

19.6.1 Creating HTML templates for all of the views
The following listing shows all of the templates for The Crypt embedded within HTML
script tags. They’re part of a full web page on JS Bin.

<script type="text/template" id="itemTemplate">
 {{item}}
</script>

<script type="text/template" id="playerTemplate">
 <h3>{{name}}</h3>
 <p>{{health}}</p>

 <ol id="playerItems">
</script>

<script type="text/template" id="placeTemplate">
 <h3>{{title}}</h3>
 <p>{{description}}</p>

 <div class="placePanel">
 <h4>Items:</h4>
 <ol id="placeItems">
 </div>

 <div class="placePanel">
 <h4>Exits:</h4>
 <ol id="placeExits">
 </div>
</script>

<script type="text/template" id="messageTemplate">
 <p>*** {{message}} ***</p>
</script>

Listing 19.13 The Crypt with Templates (HTML)
(http://jsbin.com/yapiyic/edit?html,output)

playerView

placeView

messageView

Utility

Templates

Map data

Map builder

Map Player

Place

Model Constructors

Views

Controller

Controller

Commands

Figure 19.8 Modules in The Crypt with new or updated modules highlighted

Use script tags to include
HTML templates in the page

Give the script tags a
nonstandard type attribute
so they’re not executed

Include an id attribute so
the script elements can be
accessed from JavaScript

Include an ordered list
element in the template as
a container for list items

Give the list containers ids
so the items can be added
from JavaScript

http://jsbin.com/yapiyic/edit?html,output

362 CHAPTER 19 Templates: filling placeholders with data
There’s no JavaScript mixed with the templates. A web designer used to working in
HTML could use their knowledge to update the templates without having to unpick
the HTML from any other code. Clearly, this separation of concerns makes the tem-
plates neater, easier to read, and easier to use for anyone involved in building the
application.

19.6.2 Updating the views to use the new templates

With the template strings for The Crypt now embedded as HTML on the page, you
need to update the view modules to grab the template strings and fill them with a mes-
sage or with data from the player and place models. Listings 19.14, 19.15, and 19.16
show the new view code. Note: The views are designed to be used by the controller and won’t
work in isolation. The links to JS Bin are included so you can copy, clone, or change the
code if you choose.

MESSAGES

The simplest view is the message view. Here’s the updated code.

(function () {
 "use strict";

 var messageDiv = document.getElementById("messages");
 var templateScript =
 document.getElementById("messageTemplate");
 var template = templateScript.innerHTML;

 function render (message) {
 var data = { message: message };
 messageDiv.innerHTML =
 gpwj.templates.fill(template, data);
 }

 function clear () {
 messageDiv.innerHTML = "";
 }

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

 theCrypt.messageView = {
 render: render,
 clear: clear
 };

})();

The messages passed to the render method for the message view are just strings. The
template.fill method expects objects (it uses object keys to create placeholders and
find values), so render creates an object, data, from the message to use as the argument.

Listing 19.14 A message view using templates
(http://jsbin.com/jojeyo/edit?js,console)

Collect references
to elements on the
web page

Define a function to fill
the message template
and update the display

Define a function to
empty the message div,
clearing the display

Add both functions
to the messageView
namespace

http://jsbin.com/jojeyo/edit?js,console

363The Crypt—improving the views

r

pla
div

j

A message of "hello" becomes { message : "hello" }. The fill method will then
replace the {{message}} placeholder with the value "hello".

PLAYERS

The player view is slightly more complicated than the message view because players
have items. As well as having a template string to display the player’s name and health,
the player view needs another for the items.

 The next listing shows the new player view. The code relating to items is shown
in bold.

(function () {
 "use strict";

 var playerDiv = document.getElementById("player");
 var playerScript = document.getElementById("playerTemplate");
 var itemScript = document.getElementById("itemTemplate");

 var playerTemplate = playerScript.innerHTML;
 var itemTemplate = itemScript.innerHTML;

 function render (player) {
 var data = player.getData();
 var itemsDiv;

 var items = data.items.map(function (itemName) {
 return { item : itemName };
 });

 playerDiv.innerHTML =
 gpwj.templates.fill(playerTemplate, data);

 itemsDiv = document.getElementById("playerItems");

 itemsDiv.innerHTML =
 gpwj.templates.fillList(itemTemplate, items);
 }

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

 theCrypt.playerView = {
 render: render
 };

})();

The player’s items data is an array of strings. Because fillList expects an array of
objects, you use map to transform the array from strings to objects. You pass a function to
the map method and map builds a new array, with each new element created by the func-
tion. The array ["a lamp", "a key"] becomes [{ item : "a lamp" }, { item : "a key" }].

Listing 19.15 A player view using templates
(http://jsbin.com/suyona/edit?js,console)

Use map to create an array
of item objects from the
array of item name strings

Add the HTML generated
from the player template
to the page

Get a
eference

to the
yerItems
 that has
ust been
added to
the page

Add the items HTML to
the playerItems div

http://jsbin.com/suyona/edit?js,console

364 CHAPTER 19 Templates: filling placeholders with data
 The items HTML generated by fillList can’t be added to the page until the
player HTML has been added because the player HTML includes the ol element that
will contain the items.

//Add the filled player template to the page.
playerDiv.innerHTML = gpwj.templates.fill(playerTemplate, data);

// Get a reference to the playerItems ol that’s just been added to the page
itemsDiv = document.getElementById("playerItems");

// Add the HTML for the list of items to the playerItems ol element
itemsDiv.innerHTML = gpwj.templates.fillList(itemTemplate, items);

PLACES

The places view is the most complicated because places have items and exits. But the
method for displaying exits is the same as that for items, so the extra complication is
just a touch of repetition. The exits data is an array of strings, just like the items data.
The same template can be used for both.

 The following listing shows the updated place view. The code for exits is in bold.

(function () {
 "use strict";

 var placeDiv = document.getElementById("place");
 var placeScript = document.getElementById("placeTemplate");
 var itemScript = document.getElementById("itemTemplate");

 var placeTemplate = placeScript.innerHTML;
 var itemTemplate = itemScript.innerHTML;

 function render (place) {
 var data = place.getData();
 var itemsDiv;
 var exitsDiv;

 var items = data.items.map(function (itemName) {
 return { item : itemName };
 });

 var exits = data.exits.map(function (exitName) {
 return { item : exitName };
 });

 placeDiv.innerHTML =
 gpwj.templates.fill(placeTemplate, data);

 itemsDiv = document.getElementById("placeItems");
 itemsDiv.innerHTML =
 gpwj.templates.fillList(itemTemplate, items);

Listing 19.16 A place view using templates
(http://jsbin.com/yoquna/edit?js,console)

Use map to get an
array of objects from
an array of strings

http://jsbin.com/yoquna/edit?js,console

365Summary
 exitsDiv = document.getElementById("placeExits");
 exitsDiv.innerHTML =
 gpwj.templates.fillList(itemTemplate, exits);
 }

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

 theCrypt.placeView = {
 render: render
 };

})();

Once again, map is used to convert an array of strings into an array of objects, this time
for both items and exits.

19.6.3 Enter The Crypt

Listing 19.13 on JS Bin is a working example of The Crypt using templates and the
three new views. The scripts to import the new modules are shown here:

<!-- gpwj.templates -->
<script src="http://output.jsbin.com/pugase.js"></script>

<!-- player view -->
<script src="http://output.jsbin.com/suyona.js"></script>
<!-- place view -->
<script src="http://output.jsbin.com/yoquna.js"></script>
<!-- message view -->
<script src="http://output.jsbin.com/jojeyo.js"></script>

Make your way to http://output.jsbin.com/yapiyic and have a play.

19.7 Summary
■ Use the replace string method to replace one string with another:

"One too three".replace("too", "two"); // Returns "One two three"

■ Chain calls to replace to swap multiple strings:

"One too three".replace("One", "Far").replace("three", "long");
// Returns "Far too long"

■ Use a while loop to execute a block of code while a condition remains true.

var count = 10;

while (count > 5) { // Displays 10 9 8 7 6 on separate lines
 console.log(count);
 count = count – 1;
}

Once it’s been added,
get a reference to the
placeExits ol and fill it
with the exits HTML

http://output.jsbin.com/yapiyic

366 CHAPTER 19 Templates: filling placeholders with data
■ Use the map array method to create a new array based on the elements of an
existing array. The function passed to map as an argument returns a new value
based on an old value:

var planets = ["Mercury", "Venus"];

var bigPlanets = planets.map(function (oldValue) {
 return oldValue + " becomes " + oldValue.toUpperCase();
});

// bigPlanets === ["Mercury becomes MERCURY", "Venus becomes VENUS"]

■ Use template strings with placeholders to avoid mixing JavaScript with display
strings:

var templateString = "<h3>{{title}}</h3><p>{{body}}</p>";

■ Embed template strings in HTML by using script tags with nonstandard type
attributes.

<script type="text/template" id="postTemplate">
 <h3>{{title}}</h3><p>{{body}}</p>
</script>

■ Access the template from JavaScript via the script tag’s id attribute and the
element’s innerHTML property:

var templateString = document.getElementById("postTemplate").innerHTML;

■ Fill a template with data from an object. It returns a string with the placeholders
replaced by the properties of the object:

var data = {title: "Out of Office", body: "I’m going on an adventure!"};
var template = "<h3>{{title}}</h3><p>{{body}}</p>";
gpwj.templates.fill(template, data);
// Returns "<h3>Out of Office</h3><p>I’m going on an adventure!</p>"

XHR: loading data
A calendar or movies database or adventure game can use a lot of data. A news site
may have up-to-the-minute updates with breaking news and sports scores. It’s not
always desirable to load all of the data at once or for a visitor to have to keep
refreshing a web page to get the latest information. It would be great if a page
could access just the pieces of new data it needs to stay fresh, even after it has
loaded. Stock prices, tweets, comments, scores, and, yes, the current health of zom-
bies can all be updated independently without a full page reload.

 This chapter shows you how to reach out across the internet and grab data for
your apps while they’re running. In particular, you load exercise data as you switch
between users in the fitness app, and you load location data, tomb by tomb, as play-
ers solve the riddles of The Crypt.

This chapter covers
■ Loading data with the XMLHttpRequest object
■ Calling functions once the data loads
■ Updating views with loaded data
■ JavaScript Object Notation (JSON)
■ Converting JSON text into JavaScript objects
367

368 CHAPTER 20 XHR: loading data
20.1 Building a fitness app—retrieving user data
You and your team have been building a fitness app that lets users track their exercise
(see chapters 14 to 16). The app can convert JavaScript data into user models, use a
choice of views to display user info on the console, and accept user input at the con-
sole prompt. The tasks you were given for the project are these:

1 Retrieve user data as a string.
2 Convert user data into user models.
3 Display user data.
4 Provide an interface for users to add sessions.

You’ve completed tasks 2, 3, and 4, and now it’s time to retrieve user data over the
internet. You want to be able to switch between users while using the app, as shown in
figure 20.1.

Figure 20.1 shows an app.loadUser method being called to load data for second and
third users. Before you can get your hands on the data, you need some way of specify-
ing the location of the data for each user.

20.1.1 Locating the user data

Different team members are working on versions of the fitness app for different plat-
forms and devices. But all of the versions will use the same data, provided by the cen-
tral fitness app server, as shown in figure 20.2.

Figure 20.1 Switching between users while using the fitness app

369Building a fitness app—retrieving user data
Up until now, while developing the app, you’ve been using a static data file for a single
user. You want to be able to swap between users without reloading the whole app and
without loading the data for all of the users at once (you’re hoping for lots of users!).
You decide to define a loadUser method that will load user data for a given user ID
and display it on the console:

> app.loadUser("qiwizo")
 Loading user details...

 Mahesha
 120 minutes on 2017-02-05
 35 minutes on 2017-02-06
 45 minutes on 2017-02-06

 200 minutes so far
 Well done!

Your IDs for the fitness app correspond to files on JS Bin; in a real application they
may be IDs from a database or maybe unique usernames. Each file contains the data
for just one user. For example, here’s Mahesha’s data at http://output.jsbin.com/
qiwizo.json:

{
 "name" : "Mahesha",
 "sessions" : [
 {"sessionDate": "2017-02-05", "duration": 120},
 {"sessionDate": "2017-02-06", "duration": 35},
 {"sessionDate": "2017-02-06", "duration": 45}
]
}

So, how do you load data for a player while your program is running? The secret
lies with the strangely named XMLHttpRequest object. But before you load up its

The same data is used by all of the apps

Android App iOS App

The fitness app server makes the data available

Web App

User Data

Figure 20.2 The same data is used by all of the apps.

http://output.jsbin.com/qiwizo.json
http://output.jsbin.com/qiwizo.json

370 CHAPTER 20 XHR: loading data
secrets, it’ll be worth getting a better sense of the steps involved in working with the
remote data.

20.1.2 Loading the user data—an outline

You need to load user data for the fitness app. Whenever a user calls the loadUser
method, your app needs to reach out across the internet, find the data, retrieve it, and
then use it. To do all that, the app will need the following:

■ A user ID
■ A URL at which to find the data
■ A function to call once the data is retrieved

The third requirement is worth considering further. The data is across the internet,
possibly across the world, on another machine. It will take time for the data to be
found and retrieved (hopefully milliseconds, but maybe seconds). Your program
needs the data before it can use it to create a new User and update the display. You
define a function, called a callback function, that will be called when the data is loaded.
You’ve come across callback functions before: when working with buttons in chapter 18,
you asked for a function to be called when a button was clicked. It was as if the func-
tion were listening for the click event to happen. For loading user data, your callback
function is listening for a load event to happen. Your code for loading user data and
using it to update the app will be something like this:

function updateUser (userData) {
 // Create a new User from the data
 // Use a view to update the display
}

function loadData (id, callback) {
 // Build a URL using the id

 // Let the app know to run the callback function when the data loads

 // Tell the app to go and get the data from the URL
}

loadData("qiwizo", updateUser);

You pass the loadData function the id of the user, qiwizo, and a function to call when
the data has loaded, updateUser.

 You have a sense of the steps involved in retrieving the data you need. It’s time to
study the specifics.

20.1.3 Loading the user data—the XMLHttpRequest constructor

Yes, the XMLHttpRequest constructor has a funny name, although the request bit’s
okay. You want to request information from a computer, a server, somewhere in the
world. You can research XML and HTTP as homework. From now on, apart from in
code, I’ll call it the XHR constructor. Short. Snappy. Cuddly?

371Building a fitness app—retrieving user data
 The XHR constructor is provided by the browser. You use it to create XHR objects
that include methods for requesting resources from across the internet. You pass an
XHR object a URL and a function to call, and when it loads the data it will call your
function. Figure 20.3 shows the data retrieved when an XHR object is used to load the
data for a user in the fitness app.

Listing 20.1 has the code, which includes these five steps, required to make the request
for the data.

1 Use the XHR constructor to create an XHR object
2 State or build the URL
3 Give the XHR object a function to call when the data has loaded
4 Call the open method, passing it the URL
5 Call the send method to start the request

var xhr = new XMLHttpRequest();

var url = "http://output.jsbin.com/qiwizo.json";

xhr.addEventListener("load", function () {
 console.log(xhr.responseText);
});

xhr.open("GET", url);

xhr.send();

You call the XHR constructor with the new keyword and it creates and returns an XHR
object. You call the object’s methods to set up and start the request. You provide a
function to call once the data is loaded; in listing 20.1 you use a function expression as

Listing 20.1 Using an XHR object to load user data
(http://jsbin.com/qakofo/edit?js,console)

Figure 20.3 The string
of data returned by an
XHR object

Step 1: Use the XHR constructor
to create a new XHR object

Step 2: Store a URL at
which to find the data

Step 3: Tell the XHR object
to call a function when the
data has loaded

Step 4: Call open,
specifying the URL

Step 5: Call send to
start the request

http://jsbin.com/qakofo/edit?js,console

372 CHAPTER 20 XHR: loading data
the second argument to addEventListener, but you could also use the name of a pre-
viously defined function. Once loaded, the data is automatically assigned to the
responseText property of the XHR object and your callback function can access the
data via that property. The first argument to the open function, GET, is the HTTP
method or verb for the request. You stick with GET for this chapter because you’re get-
ting data, but there are other verbs, like POST, PUT, and DELETE.

 You can see in figure 20.3 that the data is returned as text. The text is shown
between double quotation marks (the very first character and the very last). The data
is in a format called JavaScript Object Notation (JSON), which is discussed in more
detail in section 20.2. Because it’s text, a string, you can’t access the data as you would
a JavaScript object, with expressions such as data.name or data["sessions"].

 Happily, there’s a simple way to convert the JSON text into a JavaScript object.

20.1.4 Loading the user data—parsing the XHR response
with JSON.parse

The XHR request runs your callback function once it has loaded the data for a fitness
app user. The data, as a string, is automatically assigned to the responseText property
of the XHR object. In order to translate the string into a JavaScript object with proper-
ties you can access, like name and sessions, you use the JSON.parse JavaScript
method.

var dataAsObject = JSON.parse(dataAsString);

Figure 20.4 shows what the user data looks like once you parse it and log it to the con-
sole. Rather than just a string, it’s now an object with properties (compare figures 20.3
and 20.4).

The following listing updates listing 20.1, parsing the loaded text to obtain a Java-
Script object, before logging the data to the console.

Figure 20.4 Once the
JSON text has been
parsed, you have a
standard JavaScript
object.

373Building a fitness app—retrieving user data
var xhr = new XMLHttpRequest();
var url = "http://output.jsbin.com/qiwizo.json";

xhr.addEventListener("load", function () {
 var data = JSON.parse(xhr.responseText);
 console.log(data);
});

xhr.open("GET", url);
xhr.send();

You should have a big smile on your face. With just a few lines of code, you can access
data from anywhere in the world. (Well, from the server hosting your web page. But
that could be anywhere.) Big hugs.

 All of the apps developed in Get Programming with JavaScript could benefit from an
easy way to access data on JS Bin; the bin codes it generates, like qiwizo, are a bit fid-
dly. In the next section, you package the XHR code into a load function that makes
retrieving data even easier.

20.1.5 Loading JS Bin data—a handy function

The quiz app, the My Movie Ratings page, the fitness app news page, and The Crypt
could all use the ability to load data while running, just like the fitness app itself. To
streamline the process of loading data from JS Bin, you create a module, Bin Data.

 As a general utility function, you add the load function to the gpwj namespace,
already home to templating functions (see chapter 19). To load the data in a JS Bin
file, you use code of the following form:

function doSomethingWithData (data) {
 // Do something amazing with the data
}

gpwj.data.load("qiwizo", doSomethingWithData);

The next listing shows the function in action. It produces the output in figure 20.4.

(function () {
 "use strict";

 function loadData (bin, callback) {
 var xhr = new XMLHttpRequest();
 var url = "http://output.jsbin.com/" + bin + ".json";

 xhr.addEventListener("load", function () {
 var data = JSON.parse(xhr.responseText);
 callback(data);
 });

Listing 20.2 Parsing JSON text to obtain a JavaScript object
(http://jsbin.com/rexolo/edit?js,console)

Listing 20.3 A function for loading JS Bin data
(http://jsbin.com/suxoge/edit?js,console)

Parse the JSON
text to obtain a
JavaScript object

Use the bin code
to construct
the URL

Pass the loaded
data to the
callback function

http://jsbin.com/rexolo/edit?js,console
http://jsbin.com/suxoge/edit?js,console

374 CHAPTER 20 XHR: loading data
 xhr.open("GET", url);
 xhr.send();
 }

 if (window.gpwj === undefined) {
 window.gpwj = {};
 }

 gpwj.data = {
 load: loadData
 };
})();

gpwj.data.load("qiwizo", console.log);

You use the load function to grab location data in The Crypt in section 20.3. Data-load-
ing versions of the other projects in the book are available on the Get Programming with
JavaScript website at www.room51.co.uk/books/getprogramming/projects/. The fit-
ness app gets the upgrade right now.

20.1.6 Building the fitness app

The fitness app team is excited to see the working prototype of the console-based pro-
gram. There are three tasks remaining:

1 Update the controller module to use the new load function for user data
2 Use script elements to load the modules the app uses
3 Add a line of JavaScript to initialize the app

The new controller is shown here. It has a loadUser function that calls the gpwj.data
.load method. Both loadUser and log are returned from the init method as an
interface.

(function () {
 "use strict";

 var user = null;

 function buildUser (userData) { /* Listing 14.3 */ }

 function updateUserFromData (userData) {
 user = buildUser(userData);
 fitnessApp.userView.render(user);
 }

 function loadUser (id) {
 gpwj.data.load(id, updateUserFromData);
 return "Loading user details...";
 }

Listing 20.4 The fitness app controller
(http://jsbin.com/nudezo/edit?js,console)

Test the function, telling
it to call console.log
with the loaded data

Create a user from
the loaded data and
update the display

Load user data and
invoke the callback
function

http://www.room51.co.uk/books/getprogramming/projects/
http://jsbin.com/nudezo/edit?js,console

375Building a fitness app—retrieving user data
 function log (sessionDate, duration) {
 if (user !== null) {
 user.addSession(sessionDate, duration);
 fitnessApp.userView.render(user);
 return "Thanks for logging your session.";
 } else {
 return "Please wait for user details to load.";
 }
 }

 function init (id) {
 loadUser(id);

 return {
 log: log,
 loadUser: loadUser
 };
 }

 if (window.fitnessApp === undefined) {
 window.fitnessApp = {};
 }

 fitnessApp.init = init;

})();

Because the app loads user data while running, there’s a chance a user may try to log
an exercise session before the data has loaded (the fitness app users are super-keen).
The log method makes sure the user has been set, user !== null, before allowing log-
ging to take place. Remember, null is a special JavaScript value often used to signify
that an object is expected but is missing or not yet assigned.

 With all the pieces in place, it’s simply a matter of gathering them together and fir-
ing the starting pistol. The four fitness app modules are shown in figure 20.5, with the
Bin Data module replacing the module that provided static data.

You haven’t had to alter the User constructor or view. The next listing shows the
script elements used to load the four modules.

<!-- fitnessApp.User -->
<script src="http://output.jsbin.com/fasebo.js"></script>

<!-- fitnessApp.userView -->
<script src="http://output.jsbin.com/yapahe.js"></script>

Listing 20.5 The fitness app (HTML)
(http://jsbin.com/mikigo/edit?html,console)

Define a function
to let users log
their sessions

Load the data for
an initial user

Return an
interface
object

Bin Data Constructor View Controller

Figure 20.5 The modules that make up the fitness app

http://jsbin.com/mikigo/edit?html,console

376 CHAPTER 20 XHR: loading data
<!-- fitnessApp.controller -->
<script src="http://output.jsbin.com/nudezo.js"></script>

<!-- gpwj.data -->
<script src="http://output.jsbin.com/guzula.json"></script>

The following listing shows the JavaScript that fires the starting pistol, calling fitnes-
sApp.init with the JS Bin code for an initial user.

var app = fitnessApp.init("qiwizo");

The best place to see the app in action is on JS Bin, but figure 20.1 at the start of the
chapter shows a user loading and logging sessions.

 You’re thrilled with the working app and so is the development team. But there’s
something missing (apart from actually being able to save data somewhere). Isn’t
part 3 of Get Programming with JavaScript all about HTML-based apps? Why are you
back at the console?

20.1.7 The fitness app—what’s next?

Figure 20.6 shows what you’re really after—an HTML-based fitness app with drop-
down lists, text boxes, and buttons. You can choose users from a list, load their details,
and log new sessions. With all you’ve learned in the book, could you build the app?
There’s nothing like jumping in and trying to build something yourself for helping

Listing 20.6 The fitness app
(http://jsbin.com/mikigo/edit?js,console)

Figure 20.6 The fitness app using web-based views

http://jsbin.com/mikigo/edit?js,console

377JSON—a simple data format
you learn. There’s no pressure, no race, and no failure; be brave and curious, make
mistakes, and ask for help. Even if you don’t make it to the finish line, you’re sure to
learn lots along the way, get a great JavaScript workout, and build your coding muscles.
And once you’ve tried it for yourself, you can sneak a peek at http://jsbin.com/vayogu/
edit?output to see one way of piecing it together. (Don’t forget to run the program.)

 And if it’s an HTML-based data-driven app that you’re after, there’s no better place
to see it in action than in The Crypt.

 But first, as promised, here’s a very brief introduction to the JSON data format.

20.2 JSON—a simple data format
JSON is a data format that’s easy for humans to read and write and easy for computers
to parse and generate. It has become very popular as a format for exchanging data on
the web. Here’s a calendar event written in JSON:
{
 "title" : "Cooking with Cheese",
 "date" : "Wed 20 June",
 "location" : "The Kitchen"
}

The format should be very familiar; it’s based on a subset of JavaScript. Property
names and strings must be enclosed in double quotation marks. Property values can
be arrays or nested objects. Here is some calendar data for June:

{
 "calEvents" : [
 {
 "title" : "Sword Sharpening",
 "date" : "Mon 3 June",
 "location" : "The Crypt"
 },
 {
 "title" : "Team Work Session",
 "date" : "Mon 17 June",
 "location" : "The Crypt"
 },
 {
 "title" : "Cooking with Cheese",
 "date" : "Wed 20 June",
 "location" : "The Kitchen"
 }
]
}

Values can also be numbers, booleans, null, and undefined. That’s as much as you
need. (There’s not much more to JSON, to be honest. The full specification is at
http://json.org. You may be surprised at how brief it is—you have to love those train
track diagrams for efficiency!)

 JSON data is transferred as text. So, how do you convert it into objects and arrays
that can be used in a JavaScript program?

http://jsbin.com/vayogu/edit?output
http://json.org
http://jsbin.com/vayogu/edit?output

378 CHAPTER 20 XHR: loading data
20.2.1 Converting JSON into objects and arrays with JSON.parse

You turn JSON as text into JavaScript objects by passing it to the JSON.parse method.
You can then access the properties or elements in the data using dot or bracket nota-
tions. If you’ve used an XHR object to send a request for a single calendar event as
JSON, you can convert the response to a JavaScript object like this:

var calEvent = JSON.parse(xhr.responseText);

calEvent.title; // Cooking with Cheese
calEvent.date; // Wed 20 June
calEvent.location; // The Kitchen

That’s quite a brief introduction to JSON, but seeing as the whole book is about
JavaScript, it should be enough.

 It’s time to load map data, mysterious room by mysterious room, as you return to
The Crypt.

20.3 The Crypt—loading a map on demand
Adventures in The Crypt involve exploring ancient tombs, sprawling spaceships, and
mysterious forests. Each adventure may cover dozens of locations with little chance of
completion in a single sitting. Rather than loading the whole map at the start of a
game, it might make more sense to load places only when a player visits them. The
game can store the JSON data for each place in a separate file on JS Bin and use
XMLHttpRequest to load the files when needed.

 Figure 20.7 shows only the first location, loaded at the start of a game. The loaded
data includes the JS Bin file codes for the exits from the location. The data file for the
location south of the The Kitchen has the code kacaluy, for example.

 The data for each place on the map is loaded only when a player moves to that
place. Figure 20.8 shows the same map once a player has moved south from The
Kitchen. The data for The Old Library has now been loaded.

qulude
The Kitchen

west east

south

kacaluy

jodeyoxulare

Figure 20.7 At the start of the game, only the initial place data is loaded.

379The Crypt—loading a map on demand
To allow step-by-step loading like this, you have to include the JS Bin file codes for
each place’s exits in its map data.

20.3.1 Specifying exits with JS Bin file codes

Say a game in The Crypt starts in The Kitchen. At first, the game will load only the data
for The Kitchen, not for any other places on the map. That’s a lot less data loaded at
the start of the game. The next listing shows the data for that single location. (The
challenges have been left out so you can focus on the ids.)

{
 "title" : "The Kitchen",
 "id" : "qulude",
 "description" : "You are in a kitchen. There is a disturbing smell.",
 "items" : ["a piece of cheese"],
 "exits" : [
 {
 "direction" : "south",
 "to" : "The Old Library",
 "id" : "kacaluy"
 },
 {
 "direction" : "west",
 "to" : "The Kitchen Garden",
 "id" : "xulare"
 },
 {
 "direction" : "east",
 "to" : "The Kitchen Cupboard",
 "id" : "jodeyo"
 }
]
}

Listing 20.7 The JSON data for The Kitchen
(http://output.jsbin.com/qulude.json)

The Kitchen

The Old Library

qulude
west east

south

north

kacaluy

jodeyoxulare

Figure 20.8 The data for The Old Library has been loaded because the player moved there.

Include the code for the
destination of each exit
so its data can be loaded
if it is visited

http://output.jsbin.com/qulude.json

380 CHAPTER 20 XHR: loading data
Each place has a unique id that corresponds to the JS Bin code of the file where its
data is stored. You use the id to construct a place’s URL like this:

var url = "http://output.jsbin.com/" + id + ".json";

Players will move back and forth around the map, solving puzzles, collecting treasure,
dissolving zombies, and licking leopards. They’re likely to visit some locations several
times, and you’d like to avoid loading the same data again and again.

20.3.2 Using a cache—load each place only once

Whenever you create a new place from loaded data, you store it in a cache, using the
place’s id as the key. Further requests for a place can be given the stored place from
the cache, avoiding repeatedly loading the same data from JS Bin.

var placeStore = {}; // Set up an object to store the loaded places

placesStore[placeData.id] = place; // Use the place’s id as the key

20.3.3 Replacing the Map Data and Map Builder modules with
Map Manager

The map builder for The Crypt used to take data for the whole map, create all of
the place models, and then add the items, exits, and challenges to the places.
Once it had done that for the whole map, it would return the first place and the
game was ready to play. You now load one place at a time; you need a function to
load the individual place data and a function to build a single place model from
the loaded data.

 Listing 20.8 shows the code for a new Map Manager module that will replace the
map-building code you were using in previous versions of The Crypt (figure 20.9). The

playerView

placeView

messageView

Map

Map Manager

Templates

Bin Data

Utilities - gpwj Player

Place

Model Constructors

Views

Controller

Controller

Commands

Figure 20.9 The modules for The Crypt with new or updated modules highlighted

381The Crypt—loading a map on demand

t

re
Map Manager module makes a single method available in its interface, loadPlace.
Use it with a previously defined callback function or a function expression:

// Use a previously defined function as the callback
theCrypt.map.loadPlace("qiwizo", doSomethingWithPlace);

// Use a function expression as the callback
theCrypt.map.loadPlace("qiwizo", function (place) {
 // Use the place model
});

(function () {
 "use strict";

 var placesStore = {};

 function addPlace (placeData) {
 var place = new theCrypt.Place(
 placeData.title, placeData.description);

 placesStore[placeData.id] = place;

 if (placeData.items !== undefined) {
 placeData.items.forEach(place.addItem);
 }

 if (placeData.exits !== undefined) {
 placeData.exits.forEach(function (exit) {
 place.addExit(exit.direction, exit.id);
 place.addChallenge(
 exit.direction, exit.challenge);
 });
 }
 return place;
 }

 function loadPlace (id, callback) {

 var place = placesStore[id];

 if (place === undefined) {

 gpwj.data.load(id, function (placeData) {

 var place = addPlace(placeData);
 callback(place);

 });
 } else {
 callback(place);
 }
 }

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
 }

Listing 20.8 Map Manager
(http://jsbin.com/xesoxu/edit?js)

Use an object to act as a
cache for loaded places

Create a Place object
from the place data

Cache the newly created
place in placesStore,
using its id as a key

Add the place id as an
exit for the specified
direction

Include a callback parameter
for a function to be called
with the loaded place

Check
he cache

for the
quested

place

Only load the place data
if it is not in the cache

Use the
Bin Data

module to
load the

data

Call the callback with a
place newly constructed
from the data

If the place has already been
loaded, call the callback with
the cached place

http://jsbin.com/xesoxu/edit?js

382 CHAPTER 20 XHR: loading data
 theCrypt.map = {
 loadPlace: loadPlace
 };

})();

The Map Manager is made up of two functions. Let’s explore them in turn.

ADDING A PLACE TO THE STORE

The addPlace function uses the Place constructor to create a model from the data;
adds items, exits, and challenges; stores the place in the cache; and returns it.

function addPlace (placeData) {
 // Create a place model

 // Store place in cache

 // Add items
 // Add exits and challenges

 // Return the new place model
}

There’s nothing more to say for the function; apart from the cache, you’ve seen it
all before.

LOADING THE DATA FOR A SINGLE PLACE

When you call the loadPlace function, you give it the id of the place you want and a
callback function. Your callback will be called with the place model for the id as an
argument.

callback(place);

But where does the loadPlace function get the place model from? First, it tries the
cache. If the place isn’t there, it loads the place data from JS Bin.

var place = placesStore[id]; // Try to get the place from the cache

if (place === undefined) {
 // The place is not in the cache, so
 // load the place data from JS Bin and
 // pass the place to the callback
 callback(place);
} else {
 // The place was in the cache, so
 // pass it to the callback
 callback(place);
}

If the loadPlace function has to load the data, it uses the Bin Data module’s load
function to get it from JS Bin. The place wasn’t in the cache, so the code passes the
place data to addPlace, to create and store the model, before passing the new place
model to the callback.

383The Crypt—loading a map on demand

o

gpwj.data.load(id, function (placeData) {
 var place = addPlace(placeData); // Create and store a place model
 callback(place); // Pass the new place model to the callback
});

Now you know how the data loading works, you put it to use in the game controller,
for loading an initial location and for moving a player to a new location.

20.3.4 Updating the game controller to use the Map Manager

You’ll need to update two controller methods to make use of the new Map Manager.
The init method used to call buildMap to build the whole map for an adventure.
Now it will call loadPlace to load only the first place in the game. And because places
are no longer preloaded, the go method will need to call loadPlace to retrieve a place
from the cache or load it from JS Bin.

 The next listing shows the two updated methods in the context of the controller.

(function () {
 "use strict";

 var player;
 var inPlay = false;

 function init (firstPlaceId, playerName) {
 theCrypt.map.loadPlace(
 firstPlaceId, function (firstPlace) {

 player = new theCrypt.Player(playerName, 50);
 player.addItem("The Sword of Doom");
 player.setPlace(firstPlace);

 inPlay = true;
 render();

 });
 }

 function go (direction) {
 if (inPlay) {
 /* Declare variables */

 if (destination === undefined) {
 renderMessage("There is no exit in that direction");
 } else {
 if ((challenge === undefined) || challenge.complete) {
 theCrypt.map.loadPlace(
 destination, function (place) {
 player.setPlace(place);
 render();
 });
 } else {
 // Apply challenge

Listing 20.9 The game controller using the Map Manager
(http://jsbin.com/vezaza/edit?js)

Use loadPlace to load the
first place in the game
and run the init code

Load the place t
which the player
is moving

Once loaded, set the place
as the player’s location
and update the display

http://jsbin.com/vezaza/edit?js

384 CHAPTER 20 XHR: loading data
 }
 }
 } else {
 renderMessage("The game is over!");
 }
 }

 /* Other functions */

 window.game = { … };

})();

The init method can’t do the bulk of its work until the starting place has been
loaded. Most of its code, therefore, is inside the callback function passed to load-
Place. Similarly, the go method gets the place with loadPlace before setting it as the
player’s new location.

20.3.5 Building the game page

All that’s left is to import the modules and add a few lines of JavaScript to initialize
the game.

 The following listing shows the full HTML for the game. The messages div and the
text box for commands have been moved above the place and player sections.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>The Crypt</title>
</head>
<body>

 <h1>The Crypt</h1>

 <div id="messages" class="hidden"></div>

 <div id="controls">
 <input type="text" id="txtCommand" />
 <input type="button" id="btnCommand" value="Make it so" />
 </div>

 <div id="views">
 <div id="place"></div>
 <div id="player"></div>
 </div>

 <!-- Templates -->

 <script type="text/x-template" id="itemTemplate">
 {{item}}
 </script>

Listing 20.10 The Crypt (HTML)
(http://jsbin.com/cujibok/edit?html,output)

Assign the public
interface

http://jsbin.com/cujibok/edit?html,output

385The Crypt—loading a map on demand
 <script type="text/x-template" id="playerTemplate">
 <h3>{{name}}</h3>
 <p>{{health}}</p>
 <ol id="playerItems">
 </script>

 <script type="text/x-template" id="placeTemplate">
 <h3>{{title}}</h3>
 <p>{{description}}</p>

 <div class="placePanel">
 <h4>Items</h4>
 <ol id="placeItems">
 </div>

 <div class="placePanel">
 <h4>Exits</h4>
 <ol id="placeExits">
 </div>
 </script>

 <script type="text/x-template" id="messageTemplate">
 <p>*** {{message}} ***</p>
 </script>

 <!-- Modules -->

 <!-- gpwj.templates -->
 <script src="http://output.jsbin.com/pugase.js"></script>
 <!-- gpwj.data -->
 <script src="http://output.jsbin.com/guzula.js"></script>

 <!-- Place constructor -->
 <script src="http://output.jsbin.com/vuwave.js"></script>
 <!-- Player constructor -->
 <script src="http://output.jsbin.com/nonari.js"></script>

 <!-- player view -->
 <script src="http://output.jsbin.com/suyona.js"></script>
 <!-- place view -->
 <script src="http://output.jsbin.com/yoquna.js"></script>
 <!-- message view -->
 <script src="http://output.jsbin.com/jojeyo.js"></script>

 <!-- map manager -->
 <script src="http://output.jsbin.com/xesoxu.js"></script>

 <!-- game controller -->
 <script src="http://output.jsbin.com/vezaza.js"></script>
 <!-- Web Page Controls -->
 <script src="http://output.jsbin.com/xoyasi.js"></script>
</body>
</html>

The next listing shows the JavaScript initialization code. It now specifies the JS Bin
code for the data file of the first place in the game.

386 CHAPTER 20 XHR: loading data
var playerName = "Kandra";
var firstPlaceId = "vitewib";

game.init(firstPlaceId, playerName);

20.3.6 Enter The Crypt

Fantastic! The templates for the game are organized with the rest of the HTML; if the
design needs changing, the templates are easy to find and there’s no intertwining of
JavaScript, data, and HTML to wrangle. Simpler maintenance, fewer mistakes, and
happier designers. Win, win, win!

 Now, you just need to survive The Crypt. Test your strength, skill, and stamina and
play the game on JS Bin at http://output.jsbin.com/cujibok. Good luck!

20.4 Summary
■ Use XMLHttpRequest objects to load resources for a web page without reloading

the whole page.
■ Transfer data for your applications using JSON, a lightweight, readable, JavaScript-

based data exchange format.
■ To load data, create an XMLHttpRequest object, set an event listener for the

load event, call the open method with the URL of the resource, and finally call
the send method:

var xhr = new XMLHttpRequest();
xhr.addEventListener("load", function () {
 // Use xhr.responseText
});
xhr.open("GET", url);
xhr.send();

■ Access JSON data when the load event has fired via the responseText property
of the XHR object.

■ Convert the JSON data string into a JavaScript object by passing it to the
JSON.parse method:

var data = JSON.parse(xhr.responseText);

■ Use a JavaScript object as a cache. Place loaded data or models into the cache
and check the cache before using XHR.

Listing 20.11 The Crypt
(http://jsbin.com/cujibok/edit?js,output)

Specify the id of the JS
Bin file for the first
place on the map

http://jsbin.com/cujibok/edit?js,output
http://output.jsbin.com/cujibok

Conclusion:
get programming

with JavaScript
So, how do you get programming with JavaScript?

Well, you just get programming with JavaScript.

If you really want to understand programming, you have to jump in and write pro-
grams. Reading books and pondering code can be fun and informative, but it’s try-
ing to solve problems and create code yourself that really builds up your skills,
experience, and resilience. But you’re not alone. In this chapter you look at ways
you can get help if you get stuck on a project or are just curious about how things
work. First, you investigate using JavaScript in web pages saved on your own compu-
ter, rather than on JS Bin.

21.1 Working locally with files
JS Bin and other online coding sites are great for trying out your ideas and check-
ing that your code works. But you want to break out from the sandbox and create
your own sites. This section looks at writing and saving your files locally (on your
own computer) and opening them in your browser.

This chapter covers
■ Carrying on your good work
■ Working locally with files
■ Books and resources
387

388 CHAPTER 21 Conclusion: get programming with JavaScript
21.1.1 Writing code

JavaScript and HTML files are just text files. You can write them in any text editor.
Notepad for Windows and TextEdit on OS X would both do the job, although they’re
very basic. More advanced text editors perform syntax highlighting, using colors to
differentiate keywords from variables, arguments, strings, and so on, and they per-
form code completion, suggesting what you might be trying to type and letting you
insert the suggestions quickly. Some popular editors are Sublime Text, BBEdit, Note-
pad++, Atom, and Emacs.

 There are also integrated development environments (IDEs) that provide extra
tools that let you manage projects, collaborate, track versions, merge files, minify and
compress files, and lots more. Examples are Visual Studio, Dreamweaver, Eclipse, and
WebStorm. Figure 21.1 shows three editors with increasing levels of project support.

21.1.2 Saving files

Save your files in an organized way, with sensible folders splitting them into types or
subprojects. Figure 21.2 shows a possible structure of files for The Crypt. There are sep-
arate folders for style sheets, JavaScript files, and game maps. The main HTML file is

Figure 21.1 Notepad, Notepad++, and WebStorm provide increasing levels of project support.

389Working locally with files
in the root of the project. Various project folders from Get Programming with JavaScript
are available in its GitHub repository: https://github.com/jrlarsen/GetProgramming.

 The files have names that represent their purpose. Just because JS Bin assigns ran-
dom names to files, that doesn’t mean you should. The following listing shows the
HTML file for the game with the script elements used to load the JavaScript. There’s
also a link element in the head section that loads the CSS file that styles the page. The
templates have been omitted because they haven’t changed.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <link rel="stylesheet" href="css/theCrypt.css" />
 <title>The Crypt</title>
</head>
<body>

<h1>The Crypt</h1>

<div id="player"></div>
<div id="place"></div>
<div id="messages"></div>

<p id="controls">
 <input type="text" id="txtCommand">
 <button id="btnCommand">Make it so</button>
</p>

Listing 21.1 script elements in theCrypt.html

Figure 21.2 A possible structure of folders and files for The Crypt

Load the CSS file to set
the styles for the page

https://github.com/jrlarsen/GetProgramming

390 CHAPTER 21 Conclusion: get programming with JavaScript
<!-- Templates -->
 <!-- unchanged – see previous chapters -->

<!-- Modules -->
<script src="maps/TheDarkHouse.js"></script>
<script src="js/mapManager.js"></script>
<script src="js/template.js"></script>
<script src="js/player.js"></script>
<script src="js/place.js"></script>
<script src="js/playerView.js"></script>
<script src="js/placeView.js"></script>
<script src="js/messageView.js"></script>
<script src="js/gameController.js"></script>
<script src="js/commands.js"></script>
</body>
</html>

The paths used in the src attributes to tell the browser where to find the files to load
are relative to theCrypt.html. For example, maps/TheDarkHouse.js means “starting
from the same folder as theCrypt.html, find the maps folder, and in that folder find
the file called TheDarkHouse.js.”

21.1.3 Opening your pages in a browser

In your browser menu, choose File > Open and browse your filesystem for theCrypt.html.
The page should open in the browser.

21.1.4 Concatenating and minifying files

If you were hosting your project on a web server for users to access over the internet, it
would be better to place all of your JavaScript modules into a single file. For each
script element, the browser will make a request to the server for the file specified by
the src attribute. If all of the files are needed to make the application work, then it
will be quicker to load one large file rather than many small files.

 You can see a version of The Crypt on JS Bin with all of the JavaScript in the one bin:
http://jsbin.com/xewozi/edit?js,output.

 While developing the application, using separate files helps with focus, reuse, and
flexibility. But when the time comes to publish the app, merging the files will help the
code load more quickly. You can copy the code by hand into a single file, but there are
tools to help. They may be a bit advanced for beginners, but if you’re interested, look
out for Grunt, Gulp, Browserify, and CodeKit.

 The tools will also minify your code, squashing it down into a smaller file. When the
browser runs your JavaScript, it doesn’t need the spaces and line breaks that help you
read the code. It doesn’t need well-named variables either; a, b, and c will do the job
just as well as loadData, checkGameStatus, and renderMessage. The tools will strip
the spaces and rename the variables to create a smaller file that does exactly the same
job. The next two listings show the same code, the use function from The Crypt con-
troller module.

You can use relative paths
to load the script files.

http://jsbin.com/xewozi/edit?js,output

391Getting help
function r(e,a){if(s){var o=l.getPlace(),i=o.getChallenge(a);void
0===i||i.complete===!0?t("You don't need to use that
there"):l.hasItem(e)?e===i.requires?(t(i.success),i.complete=!0,i.itemConsume
d&&l.removeItem(e)):t(i.failure):t("You don't have that item")}else t("The
game is over!")}

function use (item, direction) {
 if (inPlay) {
 var place = player.getPlace();
 var challenge = place.getChallenge(direction);

 if (challenge === undefined || challenge.complete === true) {
 renderMessage("You don't need to use that there");
 } else if (player.hasItem(item)) {

 if (item === challenge.requires) {
 renderMessage(challenge.success);
 challenge.complete = true;
 if (challenge.itemConsumed) {
 player.removeItem(item);
 }
 } else {
 renderMessage(challenge.failure);
 }

 } else {
 renderMessage("You don't have that item");
 }
 } else {
 renderMessage("The game is over!");
 }
}

You can probably appreciate that file-size savings can be significant.

21.2 Getting help
The fact that you’ve read this book shows you appreciate guided, organized instruc-
tion. Once you’re up and running, though, it’s great to be able to dip in and out of
resources, look things up, and ask for help with specific problems. For reference, a
great site is the Mozilla Developer Network (https://developer.mozilla.org) which has
documentation and examples for HTML, CSS, JavaScript, and more. For answers to
specific questions, join the forums at stackoverflow (http://stackoverflow.com). Mem-
bers of the community usually answer questions quickly. JavaScript was the first lan-
guage to reach one million questions asked!

Listing 21.2 The use function (minified)

Listing 21.3 The use function

https://developer.mozilla.org
http://stackoverflow.com

392 CHAPTER 21 Conclusion: get programming with JavaScript
21.3 What next?
Get Programming with JavaScript was written as an introduction to programming.
Whereas part 1 looked at the building blocks of the JavaScript language, parts 2 and 3
had a greater emphasis on organizing larger projects and getting a taste for things to
come. The book was not written as a complete reference but as a practical experience
of programming. So where next?

21.3.1 The companion site

Articles, tutorials, videos, resources, examples, and links to other support and refer-
ence sites will continue to be added to the Get Programming with JavaScript website at
www.room51.co.uk/books/getProgramming/index.html. Some topics that have been
left out of the book, like prototypes, inheritance, working with this, Node.js, and
recent additions to JavaScript, will be covered there along with guides to improving
the examples from the book, like the quiz app, the fitness app, fitness app news, and
My Movie Ratings.

21.3.2 Books

There are many, many books on JavaScript. Here are a couple I’ve read and enjoyed.
The first would follow nicely from this one, and the second is a much more in-depth
dive into the language:

■ Eloquent JavaScript: A Modern Introduction to Programming (No Starch Press; 2nd
ed., 2014) by Marijn Haverbeke

■ Professional JavaScript for Web Developers (Wrox; 3rd ed., 2012) by Nicholas C. Zakas

21.3.3 Sites

A number of sites mix video tutorials with interactive exercises. One I particularly like
is Code School, http://codeschoo l . com.The folks at Code School have also built a
nice introductory JavaScript site at http://javascript.com.

21.3.4 Practice makes permanent

Keep practicing. Get on JS Bin and try things out. There are a number of suggestions
for projects on the book’s website. If you get stuck, feel free to post a question on the
book’s forum (https://forums.manning.com/forums/get-programming-with-javascript)
at Manning.com or join the community at stackoverflow.com.

 I hope you’ve enjoyed working through the book, tinkering with all of the code,
making conjectures, and testing out your ideas on JS Bin. Stay curious and Get Pro-
gramming with JavaScript!

http://stackoverflow.com
http://www.room51.co.uk/books/getProgramming/index.html
http://Manning.com
http://codeschool.com
http://javascript.com
https://www.manning.com/books/get-programming-with-javascrpt

393Summary
21.4 Summary
■ Use a text editor to write and save JavaScript and HTML files.
■ Organize the files for a project using folders and appropriate filenames.
■ Open the HTML files in your browser.
■ Find out more and get help at the Mozilla Developer Network and stackover-

flow.com.
■ Make the most of the resources on the book’s website.
■ Practice, practice, practice.
■ Be curious, adventurous, resilient, and patient. Good luck on your adventures!

index
Symbols

!== operator 209
* operator 21, 42
+ symbol 28
+= operator 98, 110, 126, 154
<= operator 209, 289
= operator 74
<= symbol 204
= symbol 18
=== operator 199–200, 209
/ operator 42
< operator 209
> operator 209
>= operator 209
|| symbol 293

A

abstraction 25
add function 70–71, 73–74
addAge function 151
addChallenge method 258
addEventListener method 326, 330, 372
addExit method 158, 175–176, 254, 261
addExits method 139
addItem method 137, 254, 272
addItems method 139
addMoon method 129
addPlace method 382
addSession method 250–251, 265
alert function 330
answer variable 174
app.loadUser method 368
app.log method 281, 284
applyDamage method 270

area property 85
arguments

determining return value using 72–75
passing multiple arguments to function 63–64
passing one argument to function 59–62
using objects as 84–87

accessing properties of object argument
84–85

adding properties to object argument 85–87
vs. parameters 62

arrays 104–121
array methods 110–117

adding and removing elements 111
forEach method 113–117
slice method 112
splice method 112–113

converting JSON data into objects and arrays
with 378

creating 105–106
displaying data from 311–314
elements of, accessing 106–110
player items array 118–121

assignment operator 18, 74
attempted property 34
{{author}} placeholder 348, 350
author property 349

B

backslash character 36
between function, using in guessing game 231–232
bins, creating 225, 227
blank function 91–92
blogs, writing 35
body element 333
body key 354
395

INDEX396
body property 349
body tag 308, 319
book variable 30
bookAuthor variable 28
bookTitle variable 28
boolean values 200
box method 100
bracket notation 147–168

using square brackets instead of dots 148–155
people’s names as keys 150–152
word counts 152–155

using with Crypt
game controls 164–167
linking places via exits 155–163

break statement 338
browser support 15
browser, opening local files in 390
buildExits function 259–261
buildMap function 258–259, 261–262, 288, 383
buildPlace function 259
buildPlaces function 261
buildPlanet function 87, 89, 123–127, 129
buildUser function 252–253
buttons 324–327

adding to page 324–325
listening for clicks 325–327, 339–340
writing functions to update greeting 325

C

cache, Crypt game 380
calculateSizes function 85–87
calculateTax function 50
calendars, creating 35–36
callback function 370
calling functions 46–48
callOutCharge variable 21
camel casing 23
Cascading Style Sheets. See CSS
chaining calls, replacing one string with

another 348–349
challenges object 258
challenges, Crypt game 291–292
character argument 99
checkAnswer function 214
checkGameStatus 289, 390
clear method 165, 321, 340
climbCount 182
closing tags 304
CMS (content management system) 344–345, 358
code on demand 55
coercion 209
collisions 234–238

using namespaces to minimize 237–238
variable collisions 236–237

Commands module 335, 340, 342
commands. See player commands
commandWords array 337
comparison operators, else if statement 208–209
complete property 291
concatenating local files 390–391
conditions 198–220

checking answers in quiz app 210–214
checking player’s answer 213
displaying question 212–213
handling player’s answer 214
moving to next question 213
multiple declarations with single var

keyword 211–212
returning interface object 214

conditional execution of code 199–204
else clause 200–202
hiding secret number inside functions

202–204
if statement 200
strict equality operator 199–200

Crypt-checking user input 214–220
error messages 216–217
go method 215–216
using if statement to avoid problems 217–220

else if statement 206–209
generating random numbers with

Math.random() method 204–206
Console panel 7, 224, 228–229
console prompt 75–77

calling functions at 75–76
declaring new variables at 76–77

console.error method 278
console.log function 8, 19, 41, 75, 106, 109, 152,

172, 316
constructors 122–146

creating multiple independent counters
with 182–183

examples of 132–134
using to build objects 127–132

overview 127–130
telling objects apart with instanceof

operator 131–132
world building-making use of Planet

constructor 130–131
using with Crypt

creating Place objects 134–140
streamlining player creation 140–146

content management system. See CMS
Controller module 284
controllers 280–298

Crypt game 284–286
approaching controller code 286
controller code structure 287
get function 290–291

INDEX 397
controllers (continued)
go function 292–293
initializing game 285, 288
listing properties of challenge 291–292
monitoring player health 288–289
overview 285–286
running game 296–297
updating display-functions that use view

modules 289
use function 294–296
user input 286

fitness app 281–284
controls 323–342

buttons 324–327
adding to page 324–325
listening for clicks 325–327
writing functions to update greeting 325

Crypt game 334–342
select element 327–330

adding to page 328–329
rateMovie function 329–330

text boxes 330–334
adding to page 331
adding unordered list to display

comments 332
CSS 334
getting references to new elements 332
rateMovie function 332–334

correct property 34
costPerHour variable 21
counter variable 179–181
countUpBy1 function 180
Crypt game 11–14, 268–277, 314–322, 378–386

building 12–14
building game page 384–385
building player information strings 77–82

for player’s name, health, and location 78–79
function for player information 79–82

cache 380
checking user input 214–220

error messages 216–217
go method 215–216
using if statement to avoid problems 217–220

controllers 284–286
approaching controller code 286
controller code structure 287
get function 290–291
go function 292–293
initializing game 285, 288
listing properties of challenge 291–292
monitoring player health 288–289
overview 285–286
running game 296–297
updating display-functions that use view

modules 289

use function 294–296
user input 286

CSS 319–320
displaying player information 54–56, 64–69

health 66–67
locations 67–68
names 65–66

hiding place info 191–193
hiding player info 187–191
JavaScript’s strict mode 318
map data 253–263

adding challenges to 256–257
overview 255–256
running game 262–263
updating Place constructor 258
using to build game map 258–262

Map Manager module 380–384
adding place to store 382
loading data for single place 382–383
updating game controller to use 383–384

message view 320
modules

listings 317–318
loading 318–319
render method 315–316

organizing code into modules 242–247
place views 274–277

model 274–276
view 276–277

placeholders, adding 318–319
player commands via text box 334–342

adding controls to page 335–336
Commands module 340–342
join command 336–338
listening for button clicks 339–340
mapping text box entries to game

commands 336
pop command 336–338
shift command 336–338
split command 336–338
switch block 338–339

player items array 118–121
player object in 37–39
player objects as arguments 101–103
player variables 24–26
player views 269–274

model 270–272
view 272–274

playing 11, 320
specifying exits with JS Bin file codes 379–380
user interaction 193–197
using bracket notation with 155–163
using constructors with

creating Place objects 134–140
streamlining player creation 140–146

INDEX398
Crypt game (continued)
views 360–366

creating HTML templates for 361–362
updating to use new templates 362–365

CSS (Cascading Style Sheets)
Crypt game 319–320
overview 302
text boxes 334

CSS panel, JS Bin 7
curly braces 44, 351

D

damage property 257, 291
dasher function 234–236, 238
data loading 367–386

Crypt game 378–386
building game page 384–385
cache 380
Map Manager module 380–384
specifying exits with JS Bin file codes

379–380
fitness app 368–377

building 374–376
JS Bin data 373–374
locating user data 368–370
overview 370
parsing XHR response with JSON.parse

372–373
XMLHttpRequest constructor 370–372

JSON data 377–378
data object, fitness app 251–252
data. See displaying data
dataArray function 356
dataObject.name 251
dateString function 134
dayInWeek variable 108
defining functions

new functions 44–45
using function expressions and function

declarations 45–46
dependencies 227
description property 135
destination argument 190
destinations variable 175, 216
direction parameter 215
direction string 158
displaying data 264–279

fitness app 265–268
creating views 266–267
using modules to switch views 267–268

from array 311–314
message view 278
place views 274–277
player views 269–274

displayMenu function 47
displaySale function 50
displaySizes function 86–87
div elements 312, 319–320, 345, 355
<div> tag 307
do keyword 22
doAction function 339
DOCTYPE tag 305
document.getElementById method 310, 316
dot notation 32, 89, 147–151, 160, 166–167, 345
double curly braces 346
double quotation marks 346

E

else clause 200–202, 207
else if statement 206, 208–209
empty object 30
equals symbol 18
error messages

checking user input 216–217
JS Bin 9–10

escape sequence 92
exits variable 175, 275
exits, in Crypt game 155–163

adding exits object to full Place
constructor 161–163

creating functions to add and display
exits 158–159

giving each place object its own set of
exits 159–161

testing Place constructor 163
using an object to hold exits 156–158

F

failure property 257, 291
files

filenames 225
importing into other projects 226–229

adding script element 227–228
creating bins 227
refreshing page 228
running program 228–229
writing code 227

importing multiple files 232–234
viewing individual code file 226
See also local files

fill function 355–356
fillList function 356
findPlanetPosition function 71
findTotal function 46
fitness app 249–253, 265–268

building 374–376
controllers 281–284

INDEX 399
fitness app (continued)
converting data into user model 252–253
creating views 266–267
data object 251–252
loading data 368–377

JS Bin data 373–374
locating user data 368–370
overview 370
parsing XHR response with JSON.parse

372–373
XMLHttpRequest constructor 370–372

user constructor 250–251
using modules to switch views 267–268

floor method 205
focus method 340
forEach method 110, 113–117, 133, 157
friend variable 76–77
fullMessage variable 73
function body 44
function invocation operator 240
function keyword 22, 44–45, 56, 106
functions 40–56

calling 46–48
calling at console prompt 75–76
defining

new functions 44–45
using function expressions and function

declarations 45–46
hiding secret number inside 202–204
hiding variables using 180–181
invoking 240–241
passing information to 59–64

passing multiple arguments to function
63–64

passing one argument to function 59–62
recognizing function expressions 240
repetition in code and 40–43

adding tax and displaying summary 42–43,
50–52

displaying object properties as text 41–42,
48–49

returning data from
return keyword 72
return value as replacement for function

call 71
using arguments to determine return

value 72–75
returning objects from 87–91
reuse and versatility of 57–59
setting as properties of arguments

(methods) 91–100
box method 100
line method 98–99
math methods 92–94
namespaces 91–92

spacer 96–97
string methods 94–95
wrap method 99–100

using to build objects 123–127
adding methods 125–127
adding properties 124–125

Further Adventures exercises, JS Bin 9

G

game.get() method 336
game.init method 296
get method 214, 218, 287, 290–291, 334
getBorder function 79–80
getById function 333
getChallenge method 258, 292
getCount, creating multiple independent

counters with 181–182
getCounter function 180
getData method 250–251, 265, 267, 274,

276
getExit method 191, 193, 215–217
getExits method 139
getExitsInfo function 277
getGame function 195–196, 214, 217, 243
getGreeting function 325
getGuesser function 202–203
getHelloTo function 72–73, 77
getInfo method 135–136, 272
getItems method 359
getItemsInfo function 277
getLastItem method 191, 193, 291
getMessage function 71–72, 76
getMessageInfo function 278
getMovieHTML method 313
getPlace method 144, 190, 193, 272, 286
getPlanetInfo function 84, 87
getPlayerHealth function 78
getPlayerInfo function 79–80, 101, 120
getPlayerName function 78
getPlayerPlace function 71, 78
getQuestion function 212
getQuiz function 186, 210, 239
getStateCode function 149
getTitle method 139
getTitleInfo function 277
getVisitorReport function 109
global namespace 183
global variables 173, 183, 240

dangers of 172–177
bugs 177
naming collisions 176
peeking and tweaking 173–174
relying on implementation 174–176

using window object to check for 245–246

INDEX400
go method 166, 214–216, 218, 287, 290,
383–384

checking user input with 215–216
moving player to destination 216
retrieving player’s location 215
using direction to find destination 215

Crypt game 292–293
gpwj namespace 358, 373
gpwj.data.load method 374
gpwj.templates function 360
greater than operator 209
greater than or equal to operator 209
guess function 199, 205
guess variable 202

H

<h1> tag 304, 307
<h2> tag 307
hasItem method 270, 272
head section 319, 389
<head> tag 308
help resources 391–392
HTML 301–322

adding content 305–306
function declarations 311
id attribute 310–311
to web page with JavaScript 309–311
when user doesn’t have JavaScript 311

common elements 307–308
comparing news item data and 345
constructing by string concatenation

345–346
Crypt game 314–322

CSS 319–320
JavaScript’s strict mode 318
message view 320
modules 315–319
placeholders 318–319
playing game 320

displaying data from array 311–314
lists 306–307
loading layers 303–304
overview 302–304
starting with empty page 305

HTML panel, JS Bin 6
html tags 305

I

id attribute 310–311, 325, 331–332
IDEs (integrated development environments)

388
if condition 293
if keyword 22

if statement 199, 351
conditional execution of code 200
using to avoid user input problems 217–220

if-else blocks 338
if-else statement 207
IIFE (immediately invoked function

expressions) 238–242
invoking functions 240–241
overview 241
recognizing function expressions 240
returning information from 241–242

implementation 175, 186
importing

files into other projects
adding script element 227–228
creating bins 227
refreshing page 228
running program 228–229
writing code 227

modules 359–360
multiple files 232–234
number generator 229–232

picking random questions in quiz
app 230–231

using between function in guessing
game 231–232

index variable 117
indexOf method 95, 98, 272, 352
infinite loop 352
init method 283, 288, 296, 374, 383–384
innerHTML property 310, 314, 325
inPlay variable 212, 288
input element 331
instanceof operator, telling objects apart

with 131–132
integrated development environments. See IDEs
interfaces 174, 179–183

creating multiple independent counters with
constructor function 182–183

creating multiple independent counters with
getCount 181–182

using function to hide variables 180–181
invoking functions 46
itemConsumed property 257, 291
itemIndex variable 117
items array 113–114, 118, 120
items parameter 137
items variable 111

J

JavaScript panel, JS Bin 7
join array method 153
join command 336–338
join method 110, 130

INDEX 401
JS Bin 5–10, 223–226
account, getting 10
code comments 9
creating bins 225
error messages 9–10
filenames 225
following code listings on 7–8
Further Adventures exercises 9
line numbers 10
loading data 373–374
loading HTML layers in 304
logging to console 8–9
panels 6–7

Console panel 7
CSS panel 7
HTML panel 6
JavaScript panel 7
Output panel 7

specifying Crypt game exits 379–380
viewing individual code file 226
writing code 225

JSON.parse
converting JSON data into objects and arrays

with 378
parsing XHR response with 372–373

K

kalliesCode namespace 238
keys array 151
key-value pairs, properties as 30–32
keywords 22–23

L

layers, HTML 303–304
length property 100, 103, 107, 213, 231
less than operator 209
less than or equal to comparison operator

289
less than or equal to operator 209
 tag 306, 308
line method 93, 96, 98–99
line numbers, JS Bin 10
lineLength variable 93
link element 304, 389
link tag 303
lists

building with template 355–356
HTML 306–307

load function 373–374, 382
loadData function 370, 390
loadNewLevel() method 4
loadPlace method 381–382, 384
loadUser method 369–370, 374

local files 387–391
concatenating and minifying 390–391
opening in browser 390
saving 388–390
writing code 388

local scope 177
local variables 240

assigning namespace properties to 246–247
benefits of 177–178

log method 283
longString variable 98

M

map data, Crypt game 253–263
adding challenges to 256–257
overview 255–256
running game 262–263
updating Place constructor 258
using to build game map 258–262

Map Manager module, Crypt game 380–384
adding place to store 382
loading data for single place 382–383
updating game controller to use 383–384

mapData.places array 260
math methods 92–94
Math namespace 205
Math.ceil method 205
Math.floor 326
Math.max method 93, 102
Math.min method 92
Math.random() method, generating random

numbers with 204–206
Math.round method 205
message parameter 60–61
message property 257, 291
message variable 57–58, 60–61
message view

Crypt game 320
overview 278
using templates 362–363

methods 91–100
array methods 110–117

adding and removing elements 111
forEach method 113–117
slice method 112
splice method 112–113

box method 100
line method 98–99
math methods 92–94
namespaces and 91–92
spacer 96–97
string methods 94–95
wrap method 99–100

minifying local files 390–391

INDEX402
models 248–263
fitness app 249–253

converting data into user model 252–253
data object 251–252
user constructor 250–251

map data 253–263
adding challenges to 256–257
overview 255–256
running game 262–263
updating Place constructor 258
using to build game map 258–262

See also controllers
modules 221–247

collisions 234–238
using namespaces to minimize 237–238
variable collisions 236–237

Crypt game
listings 317–318
loading 318–319
render method 315–316

immediately invoked function expressions
238–242

invoking functions 240–241
overview 241
recognizing function expressions 240
returning information from 241–242

importing files into other projects 226–229
adding script element 227–228
creating bins 227
refreshing page 228
running program 228–229
writing code 227

importing multiple files 232–234
importing number generator 229–232

picking random questions in quiz app 230–231
using between function in guessing

game 231–232
JS Bin 223–226

creating bins 225
filenames 225
viewing individual code file 226
writing code 225

news page (fitness app) 357–360
importing modules 359–360
news data 358–359
templating functions 357–358

organizing code into 242–247
sharing namespace across modules 244–247

using to switch views 267–268
moons property 129
mountain variable 172–173, 177
move function 89–90
movie variable 49
multiplication operator 21
My Movie Ratings page 325, 329

N

name parameter 76, 250
namespaces 91–92, 183

minimizing collisions with 237–238
sharing across modules 244–247

assigning namespace properties to local
variables 246–247

window object 244–246
using object as 184–185

name-value pair 31
new keyword 127, 157, 182, 188, 270
new-line character 91–92
newLine function 91–92
news page (fitness app) 344–347, 357–360

comparing news item data and HTML 345
constructing HTML by string

concatenation 345–346
designing with HTML templates 346
modules 357–360

importing 359–360
news data 358–359
templating functions 357–358

using script tags for templates 346–347
next function 183, 214
nextYear array 106
not strictly equal to operator 209
notes property 36
null value 141
Number Generator code 223
number generator, importing 229–232

picking random questions in quiz app 230–231
using between function in guessing game

231–232
numberOfHours variable 21
numberToSquare parameter 62

O

object properties, matching template placeholders
with 353–354

Object.keys method 151, 354
objects 27–39, 83–103

accessing properties of 32–33
converting JSON data into objects and arrays

with 378
creating 29–32

empty object 30
properties as key-value pairs 30–32

Crypt game player object 37–39
overview 28–29
player objects as arguments 101–103
returning from functions 87–91
setting functions as properties of

(methods) 91–100

INDEX 403
objects (continued)
box method 100
line method 98–99
math methods 92–94
namespaces 91–92
spacer 96–97
string methods 94–95
wrap method 99–100

updating properties of 33–35
using as arguments 84–87

accessing properties of object argument
84–85

adding properties to object argument
85–87

using as namespace 184–185
using constructors to build 127, 132

overview 127, 130
telling objects apart with instanceof

operator 131–132
world building-making use of Planet

constructor 130–131
using functions to build 123–127

adding methods 125–127
adding properties 124–125

 tag 306–308
opening tags 304
option elements 327–328
options array 133
OR operator 293
Output panel, JS Bin 7

P

<p> tag 304, 306–307
parameters vs. arguments 62
parentheses 44, 47
parseCommand function 339
peakCount function 182
Place constructor, updating 258
Place object 135, 139, 144, 158, 161, 166
place property 142, 144
place variable 215–216
place views 274–277

model 274–276
using templates 364–365
view 276–277

placeholders
automating placeholder replacement for

templates 353–356
building lists 355–356
filling all placeholders for each key 355
matching template placeholders with object

properties 353–354
Crypt game 318–319
See also templates

places array 255
placesStore object 260
placeView function 269
Planet function 127, 129
planet parameter 84, 87
planet1 variable 86
planet.area property 87
planets variable 126–127
planet.volume property 87
player commands, Crypt game 334–342

adding controls to page 335–336
Commands module 340–342
join command 336–338
listening for button clicks 339–340
mapping text box entries to game

commands 336
pop command 336–338
shift command 336–338
split command 336–338
switch block 338–339

Player constructor 243, 245, 270–271, 285
player information, displaying 64–69

health 66–67
locations 67–68
names 65–66

Player module 245
Player objects 140, 165
player variable 54, 56, 64, 288
player views 269–274

model 270–272
using templates 363–364
view 272–274

playerHealth parameter 66
playerInfo variable 79
playerName parameter 66–67
playerPlace parameter 67
player.place.items array 166
players array 115–116
playerView function 269
polluting global namespace 183, 237
pop command, Crypt game 336–338
pop method 110–111
posted key 354
posted property 349
programming 3–4
properties of objects

accessing 32–33
as key-value pairs 30–32
updating 33–35

properties, displaying as text 41–42
property values 33
prototypes 123
push method 110–111, 130

INDEX404
Q

qIndex property 184–186
qIndex variable 212–213
questions array 212–213, 231
quiz app 37, 210–214

checking player’s answer 213
creating 183–187

hiding questions array 185–187
using object as namespace 184–185

displaying question 212–213
handling player’s answer 214
moving to next question 213
multiple declarations with single var

keyword 211–212
picking random questions in 230–231
returning interface object 214

quiz variables 183, 185, 239
quizMe method 183, 186, 210, 230
quiz.next 185
QuizQuestion constructor 132
quiz.questions array 184
quiz.showMe 185
quiz.submit() method 214

R

random numbers, generating with
Math.random() method 204–206

Rate button 327
rateMovie function 329–330, 332–334
refreshing page, JS Bin 228
regular expressions, replacing string multiple

times with 353
removeItem method 270, 272
render method 272, 277–278, 313–317,

362
renderMessage 289, 390
repetition in code 40–43

adding tax and displaying summary
42–43

displaying object properties as text
41–42

replace method 347–348, 350
requires property 257, 291
reserved words, for naming variables

22–23
resources 391–392
responseText property 372
result variable 46
return keyword 72, 83
return statement 72, 129
return value

as replacement for function call 71
determining using arguments 72–75

returning data from functions 70–75
return keyword 72
return value as replacement for function

call 71
using arguments to determine return

value 72–75
running program, JS Bin 228–229

S

sale variable 52
saving local files 388–390
Say Hi button 324
sayHello function 44, 46
scope 171–197

Crypt game
hiding place info 191–193
hiding player info 187–191
user interaction 193–197

global variables, dangers of 172–177
bugs 177
naming collisions 176
peeking and tweaking 173–174
relying on implementation 174–176

interfaces 179–183
creating multiple independent counters

with constructor function 182–183
creating multiple independent counters

with getCount 181–182
using function to hide variables

180–181
local variables, benefits of 177–178
quiz app, creating 183–187

hiding questions array 185–187
using object as namespace 184–185

score property 34–35
score variable 17
script element, adding 227–228
script tags, using for templates 346–347
secret variable 202
secretMountain variable 178
select element 327–330

adding to page 328–329
rateMovie function 329–330

selected attribute 329
self-closing tag 331
semicolon character 10
sessions array 250
setPlace method 190, 193, 215, 272
shift array 337
shift command, The Crypt game 336–338
show function 178
showArguments function 115–116
showCostBreakdown function 44
showEvent method 133–134

INDEX 405
showExits function 158–159
showInfo method 113–114, 165, 190, 217
showMe function 183, 186
showMessage function 57–58, 60–62
showMountain function 173
showMovieInfo function 44, 49, 55
showPlanet method 125–126
showPlayerHealth function 68
showPlayerInfo function 55, 64, 68, 84, 120
showPlayerName function 65, 68
showPlayerPlace function 67–68
showQuestion function 133
showSum function 63, 70
slice method 110, 112
smooth operator 18
social property 349
spacer function 236
spacer.line 97
spacer.newLine method 139
spacer.wrap 97
span element 333, 345
splice method 110, 112–113
split command, The Crypt game 336–338
split method 153–154
square brackets 107, 149
square function 62
src attribute 228–229, 297, 390
statement 10
states object 148–149
strict equality operator 199–200
strict mode (JavaScript) 318
strictly equal to operator 209
string concatenation operator 20
string methods 94–95
strings

constructing HTML by string
concatenation 345–346

replacing multiple times 349–353
repeating code while condition is met

350–351
replacing string while it can be found

352–353
replacing strings with regular expressions

353
while loop 351–352

replacing one string with another 347–349
style tag 303
submit method 210
substr method 94–95
success property 257, 291
switch block, The Crypt game 338–339
switch keyword 22
switch variable 338

T

template.fill method 362
templates 37, 343–366

automating placeholder replacement for
353–356

building lists 355–356
filling all placeholders for each key 355
matching template placeholders with object

properties 353–354
news page (fitness app) 344–347, 357–360

comparing news item data and HTML 345
constructing HTML by string

concatenation 345–346
designing with HTML templates 346
modules 357–360
using script tags for templates 346–347

replacing strings
multiple times 349–353
replacing one string with another 347–349

views 360–366
creating HTML templates for 361–362
updating to use new templates 362–365

Templates module 361
text boxes 330–334

adding to page 331
adding unordered list to display comments 332
CSS 334
getting references to new elements 332
rateMovie function 332–334

text, displaying object properties as 41–42
this variable 157, 172, 182–183, 187–188, 190–191,

193
thisYear array 106
tightly coupled 350
title element 318–319
title key 354
title property 135, 157, 349
total property 251
total variable 74
totalCost function 74–75
toUpperCase method 87, 94, 96
type attribute 331, 346
type property 336

U

 tag 306–308, 313
unordered lists, adding to display comments 332
unshift method 130
updateGreeting function 325–326
updating properties of objects 33–35
use function 287, 290, 294–296, 334
use strict statement 326
user constructor, fitness app 250–251

INDEX406
user input, checking 214–220
error messages 216–217
go method 215–216

moving player to destination 216
retrieving player’s location 215
using direction to find destination 215

using if statement to avoid problems
217–220

user model, converting data into 252–253
userView variable 266

V

value property 330, 332, 340
values, assigning to variables 18–19

one-step declaration and assignment 20
using variable in its own assignment 21–22

var keyword 17, 22, 28, 30, 35, 211–212
variable collisions 236–237
variables 16–26

assigning namespace properties to local
variables 246–247

assigning values to 18–19
one-step declaration and assignment 20
using variable in its own assignment

21–22
choosing good names for 22–24

camel casing 23
descriptive names 24
keywords and reserved words 22–23
rules for naming variables 23

Crypt game player variables 24–26
declaring 17–18, 20
declaring at console prompt 76–77
global, dangers of 172–177

bugs 177
naming collisions 176
peeking and tweaking 173–174
relying on implementation 174–176

local, benefits of 177–178
overview 17
using window object to check for global

variables 245–246
views 264–279, 360–366

creating HTML templates for 361–362
fitness app 265–268

creating views 266–267
using modules to switch views 267–268

message view 278
place views 274–277

model 274–276
view 276–277

player views 269–274
model 270–272
view 272–274

updating to use new templates 362–365
messages 362–363
places 364–365
players 363–364

See also controllers
visitorArray variable 109
visitors variable 109
volume property 85

W

weather app 36–37
web page, adding content with JavaScript 309–311

function declarations 311
id attribute 310–311
when user doesn’t have JavaScript 311

while loops, replacing string multiple times
349–353

overview 351–352
repeating code while condition is met 350–351
replacing string while it can be found 352–353
with regular expressions 353

window object 244–246
word counts 152–155
words object 152
wrap method 99–100
wrap-and-return process 196
wrapping code 196
writing blog 35
writing code

JS Bin 227
local files 388

X

XHR data loading 367–386
Crypt game 378–386

building game page 384–385
cache 380
Map Manager module 380–384
specifying exits with JS Bin file codes 379–380

fitness app 368–377
building 374–376
JS Bin data 373–374
locating user data 368–370
overview 370
parsing XHR response with JSON.parse

372–373
XMLHttpRequest constructor 370–372

JSON data 377–378
XMLHttpRequest object 367, 369–372, 378

Y

yield keyword 22

The Crypt: a running example

In part 1 of this book, while learning core JavaScript concepts, you write code to rep-
resent the players and the places in the game and to let players move from place to
place and pick up items. The following figure shows the components you create; a
similar figure in each chapter highlights the ideas being discussed in the context of
the entire game.

Part 2 of the book adds challenges for players: blocking exits until players solve puz-
zles. The focus is on organizing your code, hiding how it works, checking user input, and
building modules that you can reuse and swap to make the project more flexible.

 In part 3, you update the display to use HTML templates, modify the game to load
data while it’s running, fill the templates with player and place information, and add
text boxes and buttons so that players can enter commands via a web page.

player variables

Players

a player object

showing player info

player items

Player Constructor

Places Maps

place objects

place items

place exits

Place Constructor

showing place info

linking places via exits

Game

render

get

go

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	About the code
	Other online resources
	About the author
	Author Online

	Part 1—Core concepts on the console
	1 Programming, JavaScript, and JS Bin
	1.1 Programming
	1.2 JavaScript
	1.3 Learning by doing and thinking
	1.4 JS Bin
	1.4.1 JS Bin panels
	1.4.2 Following the code listings on JS Bin
	1.4.3 Logging to the console
	1.4.4 Code comments
	1.4.5 Further Adventures
	1.4.6 Error messages
	1.4.7 Line numbers
	1.4.8 Get an account

	1.5 The Crypt—our running example
	1.5.1 Playing The Crypt
	1.5.2 Steps for building The Crypt

	1.6 Further examples and practice
	1.7 Browser support
	1.8 Summary

	2 Variables: storing data in your program
	2.1 What is a variable?
	2.2 Declaring variables and assigning values
	2.2.1 Declaring variables
	2.2.2 Assigning values to variables
	2.2.3 One-step declaration and assignment
	2.2.4 Using a variable in its own assignment

	2.3 Choosing good variable names
	2.3.1 Keywords and reserved words
	2.3.2 Rules for naming variables
	2.3.3 camelCase
	2.3.4 Use descriptive variable names

	2.4 The Crypt—player variables
	2.5 Summary

	3 Objects: grouping your data
	3.1 A need for organization
	3.2 Creating objects
	3.2.1 Creating an empty object
	3.2.2 Properties as key-value pairs

	3.3 Accessing object properties
	3.4 Updating object properties
	3.5 Further examples
	3.5.1 Writing a blog
	3.5.2 Creating a calendar
	3.5.3 What’s the weather like?
	3.5.4 The testing effect
	3.5.5 Create your own

	3.6 The Crypt—a player object
	3.7 Summary

	4 Functions: code on demand
	4.1 Noticing repetition
	4.1.1 Displaying object properties as text
	4.1.2 Adding tax and displaying a summary

	4.2 Defining and calling functions
	4.2.1 Defining new functions
	4.2.2 Function expressions and function declarations
	4.2.3 Using functions
	4.2.4 Functions step by step

	4.3 Reducing repetition
	4.3.1 A function for displaying object properties as text
	4.3.2 Functions for adding tax and displaying a summary

	4.4 Making code easier to read and update
	4.4.1 Updating the showMovieInfo function

	4.5 The Crypt—displaying player information
	4.5.1 A function to display player information

	4.6 Summary

	5 Arguments: passing data to functions
	5.1 Function reuse and versatility
	5.2 Passing information to functions
	5.2.1 Passing one argument to a function
	5.2.2 Passing multiple arguments to a function

	5.3 The Crypt—displaying player information
	5.3.1 Displaying players’ names
	5.3.2 Displaying players’ health
	5.3.3 Displaying players’ locations
	5.3.4 Putting it all together—displaying players’ information

	5.4 Summary

	6 Return values: getting data from functions
	6.1 Returning data from functions
	6.1.1 The return value replaces the function call
	6.1.2 The return keyword
	6.1.3 Using arguments to determine the return value

	6.2 Experimenting at the console prompt
	6.2.1 Calling functions
	6.2.2 Declaring new variables

	6.3 The Crypt—building player information strings
	6.3.1 Building strings for a player’s name, health, and location
	6.3.2 A function for player information—putting the pieces together

	6.4 Summary

	7 Object arguments: functions working with objects
	7.1 Using objects as arguments
	7.1.1 Accessing properties of an object argument
	7.1.2 Adding properties to an object argument

	7.2 Returning objects from functions
	7.2.1 Building planets—an object creation function
	7.2.2 Points in 2D space

	7.3 Methods—setting functions as properties of objects
	7.3.1 Namespaces—organizing related functions
	7.3.2 Math methods
	7.3.3 String methods
	7.3.4 spacer—more methods for your namespace
	7.3.5 Deep namespace exploration

	7.4 The Crypt–player objects as arguments
	7.5 Summary

	8 Arrays: putting data into lists
	8.1 Creating arrays and accessing elements
	8.1.1 Creating an array
	8.1.2 Accessing array elements

	8.2 Array methods
	8.2.1 Adding and removing elements
	8.2.2 Slicing and splicing arrays
	8.2.3 Visiting each element with forEach

	8.3 The Crypt—a player items array
	8.4 Summary

	9 Constructors: building objects with functions
	9.1 Using functions to build objects
	9.1.1 Adding properties
	9.1.2 Adding methods

	9.2 Using constructor functions to build objects
	9.2.1 Constructor functions
	9.2.2 World building—making use of the Planet constructor
	9.2.3 Telling objects apart with the instanceof operator

	9.3 Building mastery—two examples of constructors
	9.4 The Crypt—providing places to plunder
	9.4.1 Building the Place constructor—title and description
	9.4.2 Building the Place constructor—items for your hoard
	9.4.3 Building the Place constructor—exits to explore

	9.5 The Crypt—streamlining player creation
	9.5.1 Organizing player properties
	9.5.2 Turning functions into methods
	9.5.3 Assigning places to players
	9.5.4 Using null as a placeholder for objects

	9.6 Summary

	10 Bracket notation: flexible property names
	10.1 Using square brackets instead of dots
	10.1.1 Brackets in action—people’s names as keys
	10.1.2 Making the most of square bracket notation—word counts

	10.2 The Crypt—enhancing exit excitement
	10.2.1 Using an object to hold the exits
	10.2.2 Creating functions to add and display exits
	10.2.3 Giving each place object its own set of exits
	10.2.4 Adding the exits object to the full Place constructor
	10.2.5 Testing the Place constructor

	10.3 The Crypt—let the games begin!
	10.3.1 Updating the display—render
	10.3.2 Exploring the map—go
	10.3.3 Collecting all the things—get
	10.3.4 Designing a bigger adventure—Jahver’s ship

	10.4 What’s next?
	10.5 Summary

	Part 2—Organizing your programs
	11 Scope: hiding information
	11.1 The dangers of global variables
	11.1.1 Access all areas—peeking and tweaking
	11.1.2 Access all areas—relying on an implementation
	11.1.3 Naming collisions
	11.1.4 Crazy bugs

	11.2 The benefits of local variables
	11.3 Interfaces—controlling access and providing functionality
	11.3.1 Using a function to hide variables
	11.3.2 Creating multiple independent counters with getCount
	11.3.3 Creating multiple independent counters with a constructor function

	11.4 Creating a quick quiz app
	11.4.1 Using an object as a namespace
	11.4.2 Hiding the questions array

	11.5 The Crypt—hiding player info
	11.5.1 Our current Player constructor—everything is public
	11.5.2 An updated Player constructor—some variables are hidden

	11.6 The Crypt—hiding place info
	11.7 The Crypt—user interaction
	11.7.1 The interface—go and get
	11.7.2 Hiding the implementation

	11.8 Summary

	12 Conditions: choosing code to run
	12.1 Conditional execution of code
	12.1.1 The strict equality operator, ===
	12.1.2 The if statement
	12.1.3 The else clause
	12.1.4 Hide the secret number inside a function

	12.2 Generating random numbers with Math.random()
	12.3 Further conditions with else if
	12.3.1 Comparison operators

	12.4 Checking answers in the quiz app
	12.4.1 Multiple declarations with a single var keyword
	12.4.2 Displaying a question
	12.4.3 Moving to the next question
	12.4.4 Checking the player’s answer
	12.4.5 Handling a player’s answer
	12.4.6 Returning the interface object

	12.5 The Crypt—checking user input
	12.5.1 Step by step through the go method
	12.5.2 Never trust user input
	12.5.3 Safe exploration—using the if statement to avoid problems

	12.6 Summary

	13 Modules: breaking a program into pieces
	13.1 Understanding bins and files on JS Bin
	13.1.1 Creating a bin
	13.1.2 Writing some code
	13.1.3 Making a note of the filename
	13.1.4 Viewing an individual code file

	13.2 Importing files into other projects
	13.2.1 Creating a bin
	13.2.2 Writing some code
	13.2.3 Adding a script element
	13.2.4 Refreshing the page
	13.2.5 Running the program

	13.3 Importing the Number Generator—further examples
	13.3.1 Picking random questions in the quiz app
	13.3.2 Using the between function in your guessing game

	13.4 Importing multiple files
	13.5 Collisions—when imported code overwrites your variables
	13.5.1 Variable collisions
	13.5.2 Minimizing collisions by using namespaces

	13.6 Immediately invoked function expressions (IIFE)
	13.6.1 Recognizing function expressions
	13.6.2 Invoking functions
	13.6.3 Immediately invoking function expressions
	13.6.4 Returning information from an IIFE

	13.7 The Crypt—organizing code into modules
	13.7.1 Sharing a namespace across modules

	13.8 Summary

	14 Models: working with data
	14.1 Building a fitness app—data and models
	14.1.1 Defining a User constructor
	14.1.2 Getting a feel for the data as a JavaScript object
	14.1.3 Converting the data into a user model
	14.1.4 What’s next for the fitness app?

	14.2 The Crypt—separating map data from the game
	14.2.1 Map data
	14.2.2 Adding challenges to the map data
	14.2.3 Updating the Place constructor to include challenges
	14.2.4 Using the map data to build a game map
	14.2.5 Bringing all the pieces together to run the game

	14.3 Summary

	15 Views: displaying data
	15.1 Building a fitness app—displaying the latest user data
	15.1.1 Creating your first fitness app view
	15.1.2 Using modules to switch fitness app views
	15.1.3 What’s next for the fitness app?

	15.2 The Crypt—moving view code from Player and Place
	15.2.1 Creating a view for players
	15.2.2 Creating a view for places

	15.3 Talking to players—a message view
	15.4 Summary

	16 Controllers: linking models and views
	16.1 Building a fitness app—controllers
	16.1.1 What does the controller do?
	16.1.2 Building the fitness app controller
	16.1.3 Putting the pieces together for a working fitness app
	16.1.4 What’s next for the fitness app?

	16.2 The Crypt—adding a game controller
	16.2.1 What does the controller do?
	16.2.2 Approaching the controller code

	16.3 The Crypt—the structure of the controller code
	16.4 The Crypt—starting and stopping the game
	16.4.1 Initializing the game
	16.4.2 Monitoring player health
	16.4.3 Updating the display—functions that use the view modules

	16.5 The Crypt—giving commands and solving puzzles
	16.5.1 Picking up items with game.get
	16.5.2 Listing the properties of a challenge
	16.5.3 Moving with game.go
	16.5.4 Licking the leopard with game.use

	16.6 The Crypt—running the game
	16.7 The Crypt—what’s next for the app?
	16.8 Summary

	Part 3—JavaScript in the browser
	17 HTML: building web pages
	17.1 HTML, CSS, JavaScript—building a web page
	17.1.1 Loading the layers
	17.1.2 Loading the layers in JS Bin

	17.2 HTML—a very short introduction
	17.2.1 Starting with an empty page
	17.2.2 Adding some content
	17.2.3 Marking up a list
	17.2.4 Some common HTML elements

	17.3 Adding content to a web page with JavaScript
	17.3.1 Getting an element by its id
	17.3.2 Function declarations
	17.3.3 What, no JavaScript?

	17.4 Displaying data from an array
	17.5 The Crypt—displaying players and places with web views
	17.5.1 Updating the player and place view modules—the render method
	17.5.2 Updating the player and place view modules—the listings
	17.5.3 Using JavaScript’s strict mode
	17.5.4 Loading modules and adding placeholders in the HTML
	17.5.5 Adding a touch of CSS
	17.5.6 Playing the game
	17.5.7 Preparing the message view

	17.6 Summary

	18 Controls: getting user input
	18.1 Working with buttons
	18.1.1 Adding a button to a page
	18.1.2 Writing functions to update the greeting
	18.1.3 Listening for clicks

	18.2 Using a select element to choose an option
	18.2.1 Adding a select element to the page
	18.2.2 A function to rate movies and a button to call it

	18.3 Reading user input with text boxes
	18.3.1 Adding a text box to the page
	18.3.2 Adding an unordered list to display the comments
	18.3.3 Getting references to the new elements
	18.3.4 Updating the rateMovie function
	18.3.5 Styling the examples with CSS

	18.4 The Crypt—player commands via a text box
	18.4.1 Adding controls to the page
	18.4.2 Mapping text box entries to game commands
	18.4.3 Issuing orders with split, join, pop, and shift
	18.4.4 Deciding between options with switch
	18.4.5 Making it so—listening for button clicks
	18.4.6 Enter The Crypt

	18.5 Summary

	19 Templates: filling placeholders with data
	19.1 Building a news page—breaking news
	19.1.1 Comparing the news item data and HTML
	19.1.2 Constructing the HTML by string concatenation
	19.1.3 Designing with HTML templates
	19.1.4 Using script tags for templates

	19.2 Replacing one string with another
	19.2.1 Chaining calls to replace

	19.3 While loops—replacing a string multiple times
	19.3.1 Repeating code while a condition is met
	19.3.2 The while loop
	19.3.3 Replacing a string while it can be found
	19.3.4 Replacing strings with regular expressions

	19.4 Automating placeholder replacement for templates
	19.4.1 Matching template placeholders with object properties
	19.4.2 Filling all of the placeholders for each key
	19.4.3 Building a list of items using a template

	19.5 Building a news page—news just in
	19.5.1 Creating the templates and data modules
	19.5.2 Importing the modules

	19.6 The Crypt—improving the views
	19.6.1 Creating HTML templates for all of the views
	19.6.2 Updating the views to use the new templates
	19.6.3 Enter The Crypt

	19.7 Summary

	20 XHR: loading data
	20.1 Building a fitness app—retrieving user data
	20.1.1 Locating the user data
	20.1.2 Loading the user data—an outline
	20.1.3 Loading the user data—the XMLHttpRequest constructor
	20.1.4 Loading the user data—parsing the XHR response with JSON.parse
	20.1.5 Loading JS Bin data—a handy function
	20.1.6 Building the fitness app
	20.1.7 The fitness app—what’s next?

	20.2 JSON—a simple data format
	20.2.1 Converting JSON into objects and arrays with JSON.parse

	20.3 The Crypt—loading a map on demand
	20.3.1 Specifying exits with JS Bin file codes
	20.3.2 Using a cache—load each place only once
	20.3.3 Replacing the Map Data and Map Builder modules with Map Manager
	20.3.4 Updating the game controller to use the Map Manager
	20.3.5 Building the game page
	20.3.6 Enter The Crypt

	20.4 Summary

	21 Conclusion: get programming with JavaScript
	21.1 Working locally with files
	21.1.1 Writing code
	21.1.2 Saving files
	21.1.3 Opening your pages in a browser
	21.1.4 Concatenating and minifying files

	21.2 Getting help
	21.3 What next?
	21.3.1 The companion site
	21.3.2 Books
	21.3.3 Sites
	21.3.4 Practice makes permanent

	21.4 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	Back cover

